Suppr超能文献

用于高性能超级电容器的聚吡咯壳@三维镍金属核结构电极

Polypyrrole shell@3D-Ni metal core structured electrodes for high-performance supercapacitors.

作者信息

Chen Gao-Feng, Su Yu-Zhi, Kuang Pan-Yong, Liu Zhao-Qing, Chen Dao-Yi, Wu Xu, Li Nan, Qiao Shi-Zhang

机构信息

School of Chemistry and Chemical Engineering/Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, Guangzhou University, Guangzhou Higher Education Mega Center, Waihuan Xi Road No. 230 510006 (P. R. China).

出版信息

Chemistry. 2015 Mar 16;21(12):4614-21. doi: 10.1002/chem.201405976. Epub 2015 Jan 8.

Abstract

Three-dimensional (3D) nanometal films serving as current collectors have attracted much interest recently owing to their promising application in high-performance supercapacitors. In the process of the electrochemical reaction, the 3D structure can provide a short diffusion path for fast ion transport, and the highly conductive nanometal may serve as a backbone for facile electron transfer. In this work, a novel polypyrrole (PPy) shell@3D-Ni-core composite is developed to enhance the electrochemical performance of conventional PPy. With the introduction of a Ni metal core, the as-prepared material exhibits a high specific capacitance (726 F g(-1) at a charge/discharge rate of 1 A g(-1)), good rate capability (a decay of 33% in Csp with charge/discharge rates increasing from 1 to 20 A g(-1)), and high cycle stability (only a small decrease of 4.2% in Csp after 1000 cycles at a scan rate of 100 mV s(-1)). Furthermore, an aqueous symmetric supercapacitor device is fabricated by using the as-prepared composite as electrodes; the device demonstrates a high energy density (≈21.2 Wh kg(-1)) and superior long-term cycle ability (only 4.4% and 18.6% loss in Csp after 2000 and 5000 cycles, respectively).

摘要

作为集流体的三维(3D)纳米金属薄膜由于其在高性能超级电容器中的应用前景,近年来备受关注。在电化学反应过程中,三维结构可为快速离子传输提供短扩散路径,高导电性的纳米金属可作为电子 facile 转移的骨架。在这项工作中,开发了一种新型的聚吡咯(PPy)壳@3D-Ni核复合材料,以提高传统PPy的电化学性能。通过引入镍金属核,所制备的材料表现出高比电容(在1 A g(-1)的充放电速率下为726 F g(-1))、良好的倍率性能(随着充放电速率从1 A g(-1)增加到20 A g(-1),比电容Csp衰减33%)和高循环稳定性(在100 mV s(-1)的扫描速率下,1000次循环后比电容Csp仅小幅下降4.2%)。此外,使用所制备的复合材料作为电极制备了水系对称超级电容器器件;该器件表现出高能量密度(≈21.2 Wh kg(-1))和优异的长期循环能力(在2000次和5000次循环后,比电容Csp分别仅损失4.4%和18.6%)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验