El Nady Jehan, Shokry Azza, Khalil Marwa, Ebrahim S, Elshaer A M, Anas M
Electronic Materials Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), P.O. Box 21934, New Borg El-Arab City, Alexandria, Egypt.
Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, 163 Horrya Avenue, P.O. Box832, El-Shatby, Alexandria, Egypt.
Sci Rep. 2022 Mar 4;12(1):3611. doi: 10.1038/s41598-022-07483-y.
An electrochemical deposition technique was used to fabricate polypyrrole (Ppy)/NiO nanocomposite electrodes for supercapacitors. The nanocomposite electrodes were characterized and investigated by Fourier transform infrared spectroscopy (FTIR), X-ray Diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS). The performance of supercapacitor electrodes of Ppy/NiO nanocomposite was enhanced compared with pristine Ppy electrode. It was found that the Ppy/NiO electrode electrodeposited at 4 A/cm demonstrated the highest specific capacitance of 679 Fg at 1 Ag with an energy density of 94.4 Wh kg and power density of 500.74 W kg. Capacitance retention of 83.9% of its initial capacitance after 1000 cycles at 1 Ag was obtained. The high electrochemical performance of Ppy/NiO was due to the synergistic effect of NiO and Ppy, where a rich pores network-like structure made the electrolyte ions more easily accessible for Faradic reactions. This work provided a simple approach for preparing organic-inorganic composite materials as high-performance electrode materials for electrochemical supercapacitors.
采用电化学沉积技术制备用于超级电容器的聚吡咯(Ppy)/氧化镍(NiO)纳米复合电极。通过傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)、扫描电子显微镜(SEM)、循环伏安法(CV)、恒电流充放电(GCD)和电化学阻抗谱(EIS)对纳米复合电极进行表征和研究。与原始Ppy电极相比,Ppy/NiO纳米复合超级电容器电极的性能有所提高。结果发现,在4 A/cm²下电沉积的Ppy/NiO电极在1 A/g时表现出最高比电容679 F/g,能量密度为94.4 Wh/kg,功率密度为500.74 W/kg。在1 A/g下循环1000次后,其电容保持率为初始电容的83.9%。Ppy/NiO的高电化学性能归因于NiO和Ppy的协同效应,其中丰富的孔状网络结构使电解质离子更容易参与法拉第反应。这项工作为制备有机-无机复合材料作为电化学超级电容器的高性能电极材料提供了一种简单方法。