Xie Rili, Shen Yanbing, Qin Ning, Wang Yibo, Su Liqiu, Wang Min
, Tianjin, China.
J Ind Microbiol Biotechnol. 2015 Apr;42(4):507-13. doi: 10.1007/s10295-014-1577-2. Epub 2015 Jan 9.
Mycobacterium neoaurum TCCC 11028 (MNR) and M. neoaurum TCCC 11028 M3 (MNR M3) significantly differ in the ratio of androst-1,4-diene-3,17-dione (ADD) to androst-4-ene-3,17-dione (AD) produced. The large fluctuations are related to the dehydrogenation activity of 3-ketosteroid-Δ(1)-dehydrogenase (KsdD). Analysis of the primary structure of KsdD showed that the Ser-138 of KsdD-MNR changed to Leu-138 of KsdD-MNR M3 because of C413T in the ksdD gene. This phenomenon directly affected KsdD activity. The effect of the primary structure of KsdD on dehydrogenation activity was confirmed through exogenous expression. Whole-cell transformation initially revealed that KsdD-MNR showed a higher dehydrogenation activity than KsdD-MNR M3. Then, ksdD gene replacement strain was constructed by homologous recombination. The results of steroid transformation experiments showed that the ability of the MNR M3ΔksdD::ksdD-MNR strain to produce ADD was improved and it returned to the similar level of the MNR strain. This result indicated that the ADD/AD ratio of the two M. neoaurum strains was influenced by the difference in ksdD. The mechanism by which residue mutations alter enzyme activity may be connected with the crystal structure of KsdD from Rhodococcus erythropolis SQ1. As a key amino acid residue in the active center position, Ser-138 played an important role in maintaining the active center in the hydrophobic environment of KsdD. This study may serve as a basis for future studies on the structural analysis and catalytic mechanism of dehydrogenase.
新金色分枝杆菌TCCC 11028(MNR)和新金色分枝杆菌TCCC 11028 M3(MNR M3)在生成的雄甾-1,4-二烯-3,17-二酮(ADD)与雄甾-4-烯-3,17-二酮(AD)的比例上存在显著差异。这些大幅波动与3-酮甾体-Δ(1)-脱氢酶(KsdD)的脱氢活性有关。对KsdD一级结构的分析表明,由于ksdD基因中的C413T,KsdD-MNR的Ser-138转变为KsdD-MNR M3的Leu-138。这一现象直接影响了KsdD的活性。通过外源表达证实了KsdD一级结构对脱氢活性的影响。全细胞转化最初显示KsdD-MNR比KsdD-MNR M3具有更高的脱氢活性。然后,通过同源重组构建了ksdD基因替换菌株。甾体转化实验结果表明,MNR M3ΔksdD::ksdD-MNR菌株产生ADD的能力得到了提高,并且恢复到了与MNR菌株相似的水平。该结果表明,两种新金色分枝杆菌菌株的ADD/AD比例受ksdD差异的影响。残基突变改变酶活性的机制可能与红平红球菌SQ1的KsdD晶体结构有关。作为活性中心位置的关键氨基酸残基,Ser-138在维持KsdD疏水环境中的活性中心方面发挥了重要作用。本研究可为未来脱氢酶的结构分析和催化机制研究提供依据。