Suppr超能文献

通过在耻垢分枝杆菌中缺失 3-酮固醇 Δ-脱氢酶和进行多种遗传修饰来提高植物甾醇生产 9α-羟基-4-雄烯-3,17-二酮的产量。

Improving the production of 9α-hydroxy-4-androstene-3,17-dione from phytosterols by 3-ketosteroid-Δ-dehydrogenase deletions and multiple genetic modifications in Mycobacterium fortuitum.

机构信息

Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China.

University of Chinese Academy of Sciences, Beijing, 100049, China.

出版信息

Microb Cell Fact. 2023 Mar 16;22(1):53. doi: 10.1186/s12934-023-02052-y.

Abstract

BACKGROUND

9α-hydroxyandrost-4-ene-3,17-dione (9-OHAD) is a significant intermediate for the synthesis of glucocorticoid drugs. However, in the process of phytosterol biotransformation to manufacture 9-OHAD, product degradation, and by-products restrict 9-OHAD output. In this study, to construct a stable and high-yield 9-OHAD producer, we investigated a combined strategy of blocking Δ‑dehydrogenation and regulating metabolic flux.

RESULTS

Five 3-Ketosteroid-Δ-dehydrogenases (KstD) were identified in Mycobacterium fortuitum ATCC 35855. KstD2 showed the highest catalytic activity on 3-ketosteroids, followed by KstD3, KstD1, KstD4, and KstD5, respectively. In particular, KstD2 had a much higher catalytic activity for C9 hydroxylated steroids than for C9 non-hydroxylated steroids, whereas KstD3 showed the opposite characteristics. The deletion of kstDs indicated that KstD2 and KstD3 were the main causes of 9-OHAD degradation. Compared with the wild type M. fortuitum ATCC 35855, MFΔkstD, the five kstDs deficient strain, realized stable accumulation of 9-OHAD, and its yield increased by 42.57%. The knockout of opccr or the overexpression of hsd4A alone could not reduce the metabolic flux of the C22 pathway, while the overexpression of hsd4A based on the knockout of opccr in MFΔkstD could remarkably reduce the contents of 9,21 ‑dihydroxy‑20‑methyl‑pregna‑4‑en‑3‑one (9-OHHP) by-products. The inactivation of FadE28-29 leads to a large accumulation of incomplete side-chain degradation products. Therefore, hsd4A and fadE28-29 were co-expressed in MFΔkstDΔopccr successfully eliminating the two by-products. Compared with MFΔkstD, the purity of 9-OHAD improved from 80.24 to 90.14%. Ultimately, 9‑OHAD production reached 12.21 g/L (83.74% molar yield) and the productivity of 9-OHAD was 0.0927 g/L/h from 20 g/L phytosterol.

CONCLUSIONS

KstD2 and KstD3 are the main dehydrogenases that lead to 9-OHAD degradation. Hsd4A and Opccr are key enzymes regulating the metabolic flux of the C19- and C22-pathways. Overexpression of fadE28-29 can reduce the accumulation of incomplete degradation products of the side chains. According to the above findings, the MF-FA5020 transformant was successfully constructed to rapidly and stably accumulate 9-OHAD from phytosterols. These results contribute to the understanding of the diversity and complexity of steroid catabolism regulation in actinobacteria and provide a theoretical basis for further optimizing industrial microbial catalysts.

摘要

背景

9α-羟基雄甾-4-烯-3,17-二酮(9-OHAD)是合成糖皮质激素药物的重要中间体。然而,在植物甾醇生物转化制造 9-OHAD 的过程中,产物降解和副产物限制了 9-OHAD 的产量。在这项研究中,为了构建稳定高产的 9-OHAD 生产菌,我们研究了一种阻断 Δ-脱氢和调节代谢通量的联合策略。

结果

从耻垢分枝杆菌 ATCC 35855 中鉴定出 5 种 3-酮固醇 Δ-脱氢酶(KstD)。KstD2 对 3-酮固醇表现出最高的催化活性,其次是 KstD3、KstD1、KstD4 和 KstD5。特别是,KstD2 对 C9 羟基化甾体的催化活性远高于 C9 非羟基化甾体,而 KstD3 则表现出相反的特性。kstD 的缺失表明 KstD2 和 KstD3 是 9-OHAD 降解的主要原因。与野生型耻垢分枝杆菌 ATCC 35855 相比,缺失了所有 5 种 kstD 的 MFΔkstD 菌株实现了 9-OHAD 的稳定积累,产量提高了 42.57%。单独敲除 opccr 或过表达 hsd4A 都不能降低 C22 途径的代谢通量,而基于 MFΔkstD 中敲除 opccr 过表达 hsd4A 可以显著降低 9,21-二羟基-20-甲基-孕甾-4-烯-3-酮(9-OHHP)副产物的含量。FadE28-29 的失活导致不完全侧链降解产物的大量积累。因此,hsd4A 和 fadE28-29 在 MFΔkstDΔopccr 中成功共表达,消除了这两种副产物。与 MFΔkstD 相比,9-OHAD 的纯度从 80.24%提高到 90.14%。最终,从 20g/L 植物甾醇中 9-OHAD 的产量达到 12.21g/L(摩尔收率 83.74%),9-OHAD 的生产强度达到 0.0927g/L/h。

结论

KstD2 和 KstD3 是导致 9-OHAD 降解的主要脱氢酶。Hsd4A 和 Opccr 是调节 C19-和 C22-途径代谢通量的关键酶。过表达 fadE28-29 可以减少侧链不完全降解产物的积累。根据上述发现,成功构建了 MF-FA5020 转化体,可从植物甾醇中快速稳定地积累 9-OHAD。这些结果有助于理解放线菌中甾体代谢调控的多样性和复杂性,并为进一步优化工业微生物催化剂提供了理论依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e00/10018825/ed9324132d22/12934_2023_2052_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验