Suppr超能文献

TsrA丙氨酸4的饱和诱变揭示了硫链丝菌素A的一个高度可变残基。

Saturation mutagenesis of TsrA Ala4 unveils a highly mutable residue of thiostrepton A.

作者信息

Zhang Feifei, Kelly Wendy L

机构信息

School of Chemistry and Biochemistry and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States.

出版信息

ACS Chem Biol. 2015 Apr 17;10(4):998-1009. doi: 10.1021/cb5007745. Epub 2015 Jan 20.

Abstract

Thiopeptides are post-translationally processed macrocyclic peptide metabolites, characterized by extensive backbone and side chain modifications that include a six-membered nitrogeneous ring, thiazol(in)e/oxazol(in)e rings, and dehydrated amino acid residues. Thiostrepton A, one of the more structurally complex and well-studied thiopeptides, contains a second macrocycle bearing a quinaldic acid moiety. Antibacterial, antimalarial, and anticancer properties have been described for thiostrepton A and other thiopeptides, although the molecular details for binding the cellular target in each case are not fully elaborated. We previously demonstrated that a mutation of the TsrA core peptide, Ala4Gly, supported the successful production of the corresponding thiostrepton variant. To more thoroughly probe the thiostrepton biosynthetic machinery's tolerance toward structural variation at the fourth position of the TsrA core peptide, we report here the saturation mutagenesis of this residue using a fosmid-dependent biosynthetic engineering method and the isolation of 16 thiostrepton analogues. Several types of side chain substitutions at the fourth position of TsrA, including those that introduce polar or branched hydrophobic residues are accepted, albeit with varied preferences. In contrast, proline and amino acid residues inherently charged at physiological pH are not well-tolerated at the queried site by the thiostrepton biosynthetic system. These newly generated thiostrepton analogues were assessed for their antibacterial activities and abilities to inhibit the proteolytic functions of the eukaryotic 20S proteasome. We demonstrate that the identity of the fourth amino acid residue in the thiostrepton scaffold is not critical for either ribosome or proteasome inhibition.

摘要

硫肽是翻译后加工的大环肽代谢产物,其特征在于广泛的主链和侧链修饰,包括一个六元含氮环、噻唑(啉)/恶唑(啉)环和脱水氨基酸残基。硫链丝菌素A是结构较为复杂且研究较多的硫肽之一,它含有一个带有喹哪啶酸部分的第二个大环。硫链丝菌素A和其他硫肽已被描述具有抗菌、抗疟疾和抗癌特性,尽管每种情况下与细胞靶点结合的分子细节尚未完全阐明。我们之前证明,TsrA核心肽的Ala4Gly突变支持了相应硫链丝菌素变体的成功产生。为了更全面地探究硫链丝菌素生物合成机制对TsrA核心肽第四位结构变异的耐受性,我们在此报告使用基于fosmid的生物合成工程方法对该残基进行饱和诱变,并分离出16种硫链丝菌素类似物。TsrA第四位的几种侧链取代,包括引入极性或支链疏水残基的取代,尽管偏好各异,但都被接受。相比之下,脯氨酸和在生理pH下固有带电的氨基酸残基在硫链丝菌素生物合成系统中在所研究的位点上耐受性不佳。对这些新产生的硫链丝菌素类似物的抗菌活性和抑制真核20S蛋白酶体蛋白水解功能的能力进行了评估。我们证明,硫链丝菌素支架中第四位氨基酸残基的身份对于核糖体或蛋白酶体抑制都不是关键的。

相似文献

1
Saturation mutagenesis of TsrA Ala4 unveils a highly mutable residue of thiostrepton A.
ACS Chem Biol. 2015 Apr 17;10(4):998-1009. doi: 10.1021/cb5007745. Epub 2015 Jan 20.
2
Thiostrepton Variants Containing a Contracted Quinaldic Acid Macrocycle Result from Mutagenesis of the Second Residue.
ACS Chem Biol. 2016 Feb 19;11(2):415-24. doi: 10.1021/acschembio.5b00731. Epub 2015 Dec 14.
3
Heterologous production of thiostrepton A and biosynthetic engineering of thiostrepton analogs.
Mol Biosyst. 2011 Jan;7(1):82-90. doi: 10.1039/c0mb00129e. Epub 2010 Nov 25.
4
Thiostrepton biosynthesis: prototype for a new family of bacteriocins.
J Am Chem Soc. 2009 Apr 1;131(12):4327-34. doi: 10.1021/ja807890a.
5
In vivo production of thiopeptide variants.
Methods Enzymol. 2012;516:3-24. doi: 10.1016/B978-0-12-394291-3.00022-8.
8
Mutagenesis of the thiostrepton precursor peptide at Thr7 impacts both biosynthesis and function.
Chem Commun (Camb). 2012 Jan 14;48(4):558-60. doi: 10.1039/c1cc14281j. Epub 2011 Nov 8.
10
Molecular interactions between thiostrepton and the TipAS protein from Streptomyces lividans.
Chembiochem. 2014 Mar 21;15(5):681-7. doi: 10.1002/cbic.201300724. Epub 2014 Feb 24.

引用本文的文献

1
A Compact Reprogrammed Genetic Code for De Novo Discovery of Proteolytically Stable Thiopeptides.
J Am Chem Soc. 2024 Mar 27;146(12):8058-8070. doi: 10.1021/jacs.3c12037. Epub 2024 Mar 16.
2
De Novo Discovery of Thiopeptide Pseudo-natural Products Acting as Potent and Selective TNIK Kinase Inhibitors.
J Am Chem Soc. 2022 Nov 9;144(44):20332-20341. doi: 10.1021/jacs.2c07937. Epub 2022 Oct 25.
3
Thiopeptides: antibiotics with unique chemical structures and diverse biological activities.
J Antibiot (Tokyo). 2021 Mar;74(3):161-175. doi: 10.1038/s41429-020-00387-x. Epub 2020 Dec 21.
4
Thiopeptides Induce Proteasome-Independent Activation of Cellular Mitophagy.
ACS Chem Biol. 2020 Aug 21;15(8):2164-2174. doi: 10.1021/acschembio.0c00364. Epub 2020 Jul 14.
5
Minimal lactazole scaffold for in vitro thiopeptide bioengineering.
Nat Commun. 2020 May 8;11(1):2272. doi: 10.1038/s41467-020-16145-4.
6
Fixing the Unfixable: The Art of Optimizing Natural Products for Human Medicine.
J Med Chem. 2019 Sep 26;62(18):8412-8428. doi: 10.1021/acs.jmedchem.9b00246. Epub 2019 Apr 26.
7
Thiopeptide Pyridine Synthase TbtD Catalyzes an Intermolecular Formal Aza-Diels-Alder Reaction.
J Am Chem Soc. 2019 Feb 6;141(5):1842-1846. doi: 10.1021/jacs.8b11852. Epub 2019 Jan 22.
8
Flexizyme-Enabled Benchtop Biosynthesis of Thiopeptides.
J Am Chem Soc. 2019 Jan 16;141(2):758-762. doi: 10.1021/jacs.8b11521. Epub 2019 Jan 8.
9
Biosynthesis of the Thiopeptins and Identification of an FH-Dependent Dehydropiperidine Reductase.
J Am Chem Soc. 2018 Aug 29;140(34):10749-10756. doi: 10.1021/jacs.8b04238. Epub 2018 Aug 17.
10
RiPP antibiotics: biosynthesis and engineering potential.
Curr Opin Microbiol. 2018 Oct;45:61-69. doi: 10.1016/j.mib.2018.02.010. Epub 2018 Mar 10.

本文引用的文献

1
The posttranslational modification cascade to the thiopeptide berninamycin generates linear forms and altered macrocyclic scaffolds.
Proc Natl Acad Sci U S A. 2013 May 21;110(21):8483-8. doi: 10.1073/pnas.1307111110. Epub 2013 May 6.
2
In vitro activity of the nisin dehydratase NisB.
Proc Natl Acad Sci U S A. 2013 Apr 30;110(18):7258-63. doi: 10.1073/pnas.1222488110. Epub 2013 Apr 15.
4
Codon randomization for rapid exploration of chemical space in thiopeptide antibiotic variants.
Chem Biol. 2012 Dec 21;19(12):1600-10. doi: 10.1016/j.chembiol.2012.10.013.
5
Synthesis and antibacterial activity of novel water-soluble nocathiacin analogs.
Bioorg Med Chem Lett. 2013 Jan 1;23(1):366-9. doi: 10.1016/j.bmcl.2012.10.065. Epub 2012 Oct 23.
6
In vivo production of thiopeptide variants.
Methods Enzymol. 2012;516:3-24. doi: 10.1016/B978-0-12-394291-3.00022-8.
7
Generation of thiocillin ring size variants by prepeptide gene replacement and in vivo processing by Bacillus cereus.
J Am Chem Soc. 2012 Jun 27;134(25):10313-6. doi: 10.1021/ja302820x. Epub 2012 Jun 15.
8
Discovery of LFF571: an investigational agent for Clostridium difficile infection.
J Med Chem. 2012 Mar 8;55(5):2376-87. doi: 10.1021/jm201685h. Epub 2012 Feb 23.
9
Mutagenesis of the thiostrepton precursor peptide at Thr7 impacts both biosynthesis and function.
Chem Commun (Camb). 2012 Jan 14;48(4):558-60. doi: 10.1039/c1cc14281j. Epub 2011 Nov 8.
10
The transcription factor FOXM1 is a cellular target of the natural product thiostrepton.
Nat Chem. 2011 Aug 21;3(9):725-31. doi: 10.1038/nchem.1114.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验