Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
Department of Biochemistry, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama 236-0004, Japan.
J Am Chem Soc. 2022 Nov 9;144(44):20332-20341. doi: 10.1021/jacs.2c07937. Epub 2022 Oct 25.
Bioengineering of ribosomally synthesized and post-translationally modified peptides (RiPPs) is an emerging approach to explore the diversity of pseudo-natural product structures for drug discovery purposes. However, despite the initial advances in this area, bioactivity reprogramming of multienzyme RiPP biosynthetic pathways remains a major challenge. Here, we report a platform for de novo discovery of functional thiopeptides based on reengineered biosynthesis of lactazole A, a RiPP natural product assembled by five biosynthetic enzymes. The platform combines in vitro biosynthesis of lactazole-like thiopeptides and mRNA display to prepare and screen large (≥10) combinatorial libraries of pseudo-natural products. We demonstrate the utility of the developed protocols in an affinity selection against Traf2- and NCK-interacting kinase (TNIK), a protein involved in several cancers, which yielded a plethora of candidate thiopeptides. Of the 11 synthesized compounds, 9 had high affinities for the target kinase (best = 1.2 nM) and 10 inhibited its enzymatic activity (best = 3 nM). X-ray structural analysis of the TNIK/thiopeptide interaction revealed the unique mode of substrate-competitive inhibition exhibited by two of the discovered compounds. The thiopeptides internalized to the cytosol of HEK293H cells as efficiently as the known cell-penetrating peptide Tat (4-6 μM). Accordingly, the most potent compound, TP15, inhibited TNIK in HCT116 cells. Altogether, our platform enables the exploration of pseudo-natural thiopeptides with favorable pharmacological properties in drug discovery applications.
核糖体合成和翻译后修饰肽(RiPPs)的生物工程是一种新兴的方法,用于探索具有药物发现目的的伪天然产物结构的多样性。然而,尽管在该领域取得了初步进展,但多酶 RiPP 生物合成途径的生物活性重编程仍然是一个主要挑战。在这里,我们报告了一种基于乳唑 A 重新工程生物合成的从头发现功能性硫肽的平台,乳唑 A 是一种由五个生物合成酶组装的 RiPP 天然产物。该平台结合了乳唑样硫肽的体外生物合成和 mRNA 展示,以制备和筛选大(≥10)组合的伪天然产物文库。我们证明了所开发的方案在针对涉及几种癌症的 Traf2 和 NCK 相互作用激酶(TNIK)的亲和选择中的实用性,该方案产生了大量候选硫肽。在所合成的 11 种化合物中,有 9 种对靶激酶具有高亲和力(最佳为 1.2 nM),有 10 种抑制其酶活性(最佳为 3 nM)。TNIK/硫肽相互作用的 X 射线结构分析揭示了两种发现的化合物所表现出的独特的底物竞争性抑制模式。这些硫肽能够像已知的细胞穿透肽 Tat(4-6 μM)一样有效地内化到 HEK293H 细胞的细胞质中。因此,最有效的化合物 TP15 抑制了 HCT116 细胞中的 TNIK。总之,我们的平台能够在药物发现应用中探索具有有利药理学性质的伪天然硫肽。