Contoreggi Carlo
Intramural Research Program (IRP), National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), Baltimore, MD, 21224.
Nucl Med Biol. 2015 Apr;42(4):323-39. doi: 10.1016/j.nucmedbio.2014.11.008. Epub 2014 Nov 26.
The stress system provides integration of both neurochemical and somatic physiologic functions within organisms as an adaptive mechanism to changing environmental conditions throughout evolution. In mammals and primates the complexity and sophistication of these systems have surpassed other species in triaging neurochemical and physiologic signaling to maximize chances of survival. Corticotropin releasing hormone (CRH) and its related peptides and receptors have been identified over the last three decades and are fundamental molecular initiators of the stress response. They are crucial in the top down regulatory cascade over a myriad of neurochemical, neuroendocrine and sympathetic nervous system events. From neuroscience, we've seen that stress activation impacts behavior, endocrine and somatic physiology and influences neurochemical events that one can capture in real time with current imaging technologies. To delineate these effects one can demonstrate how the CRH neuronal networks infiltrate critical cognitive, emotive and autonomic regions of the central nervous system (CNS) with somatic effects. Abundant preclinical and clinical studies show inter-regulatory actions of CRH with multiple neurotransmitters/peptides. Stress, both acute and chronic has epigenetic effects which magnify genetic susceptibilities to alter neurochemistry; stress system activation can add critical variables in design and interpretation of basic and clinical neuroscience and related research. This review will attempt to provide an overview of the spectrum of known functions and speculative actions of CRH and stress responses in light of imaging technology and its interpretation. Metabolic and neuroreceptor positron emission/single photon tomography (PET/SPECT), functional magnetic resonance imaging (fMRI), anatomic MRI, diffusion tensor imaging (DTI), and proton magnetic resonance spectroscopy (pMRS) are technologies that can delineate basic mechanisms of neurophysiology and pharmacology. Stress modulates the myriad of neurochemical and networks within and controlled through the central and peripheral nervous system and the effects of stress activation on imaging will be highlighted.
应激系统作为一种适应性机制,在整个进化过程中整合了生物体内部的神经化学和躯体生理功能,以应对不断变化的环境条件。在哺乳动物和灵长类动物中,这些系统的复杂性和精密性在对神经化学和生理信号进行分类以最大化生存机会方面超过了其他物种。促肾上腺皮质激素释放激素(CRH)及其相关肽和受体在过去三十年中已被确定,是应激反应的基本分子启动因子。它们在众多神经化学、神经内分泌和交感神经系统事件的自上而下调节级联中起着关键作用。从神经科学领域我们了解到,应激激活会影响行为、内分泌和躯体生理,并影响通过当前成像技术可以实时捕捉到的神经化学事件。为了描述这些影响,可以展示CRH神经网络如何渗透到中枢神经系统(CNS)的关键认知、情感和自主区域并产生躯体效应。大量的临床前和临床研究表明CRH与多种神经递质/肽之间存在相互调节作用。急性和慢性应激都具有表观遗传效应,会放大遗传易感性以改变神经化学;应激系统激活会在基础和临床神经科学及相关研究的设计和解释中增加关键变量。本综述将尝试根据成像技术及其解释,概述CRH已知功能和推测作用的范围以及应激反应。代谢和神经受体正电子发射/单光子断层扫描(PET/SPECT)、功能磁共振成像(fMRI)、解剖磁共振成像(MRI)、扩散张量成像(DTI)和质子磁共振波谱(pMRS)等技术能够描绘神经生理学和药理学的基本机制。应激调节中枢和外周神经系统内以及受其控制的众多神经化学物质和神经网络,并且将重点强调应激激活对成像的影响。