Baram T Z, Yi S, Avishai-Eliner S, Schultz L
Department of Anatomy & Neurobiology, University of California, Irvine 92697-4475, USA.
Ann N Y Acad Sci. 1997 Apr 24;814:252-65. doi: 10.1111/j.1749-6632.1997.tb46161.x.
The ability to respond to adverse environmental cues is present in the neonatal and infant rat, although in an immature form: A number of laboratories have demonstrated stress-induced elevations of plasma glucocorticoids during the first two postnatal weeks. The limbic and hypothalamic mechanisms controlling the hormonal stress-response during this period are not fully understood and are, therefore, the focus of this report. Both hypothalamic corticotropin-releasing hormone (CRH) and vasopressin contribute to the release of ACTH from the pituitary in the adult. The relative roles of these two peptides during the neonatal (first week) and infant (second week) developmental period, are controversial. Evidence is presented that argues strongly for a major role for CRH. Up-regulation of hypothalamic CRH synthesis is a major component in the mature stress response. CRH-mRNA levels in the hypothalamic PVN are increased with cold stress by ninth postnatal day, but not during the first postnatal week. Further, down-regulation of CRH gene expression by glucocorticoids (GC) constitutes a critical "shut-down" mechanism for the hormonal stress response. In vivo and in vitro experiments supporting the "immaturity" of GC feedback on CRH synthesis during the first postnatal week are described. CRH-mediated neurotransmission, in both the endocrine and neuronal effector arms of the response to stress may be modulated via alteration of receptor number. The first member of the CRH receptor family, CRF1, probably mediates the neuroendocrine effects of CRH. The developmental profile of CRF1-mRNA reveals several distinctive spatial and temporal patterns. In the hippocampal CA1, CA2, and CA3a peak (300-600% adult values) CRF1-mRNA is found on postnatal day 6. In the amygdala, CRH receptor mRNA levels are maximal on the ninth postnatal day (at 180% of adult values). In cortex, a steady decline from high postnatal day 2 levels results in adult levels by 12. These findings demonstrate distinct, regional, age-specific control of the synthesis of CRF1. Receptor expression profile may provide important information regarding modulation of the age-specific roles of CRH in different regions. For example, a high ratio of hippocampus/amygdala receptors may preferentially activate negative hippocampal input to the hypothalamus during the neonatal period. Additionally, increased CRH receptor mRNA in the infant compared with the adult provides a mechanism for enhanced excitatory effect of the peptide at this age. In conclusion, increasing evidence exists for multiple control points of the early postnatal response and adaptation to stress. CRH synthesis in hypothalamus and amygdala, its sensitivity to GC feedback, and the abundance and distribution of at least two distinct CRH receptors in the limbic central nervous system and the pituitary are developmentally regulated. All serve as control points permitting an effective endocrine, autonomic, and behavioral response to stressful environmental cues.
新生和幼年大鼠具备对不利环境线索作出反应的能力,不过这种能力尚不成熟:多个实验室已证实,在出生后的前两周内,应激会导致血浆糖皮质激素升高。在此期间,控制激素应激反应的边缘系统和下丘脑机制尚未完全明确,因此,本报告将聚焦于此。下丘脑促肾上腺皮质激素释放激素(CRH)和血管加压素在成年个体中均有助于垂体释放促肾上腺皮质激素(ACTH)。这两种肽在新生儿期(第一周)和婴儿期(第二周)发育阶段的相对作用存在争议。现有证据有力地表明CRH起主要作用。下丘脑CRH合成的上调是成熟应激反应的主要组成部分。下丘脑室旁核(PVN)中的CRH - mRNA水平在出生后第9天因冷应激而升高,但在出生后的第一周并未升高。此外,糖皮质激素(GC)对CRH基因表达的下调构成了激素应激反应的关键“关闭”机制。文中描述了支持出生后第一周内GC对CRH合成反馈“不成熟”的体内和体外实验。在应激反应的内分泌和神经元效应分支中,CRH介导的神经传递可能通过受体数量的改变进行调节。CRH受体家族的首个成员CRF1可能介导CRH的神经内分泌效应。CRF1 - mRNA的发育图谱揭示了几种独特的空间和时间模式。在海马体CA1、CA2和CA3a区域,出生后第6天CRF1 - mRNA达到峰值(为成年值的300 - 600%)。在杏仁核中,CRH受体mRNA水平在出生后第9天达到最高(为成年值的180%)。在皮质中,出生后第2天的高水平稳步下降,到第12天达到成年水平。这些发现表明CRF1合成受到独特的、区域性的、年龄特异性的控制。受体表达图谱可能为不同区域CRH年龄特异性作用的调节提供重要信息。例如,海马体/杏仁核受体的高比例可能在新生儿期优先激活海马体对下丘脑的负性输入。此外,与成年个体相比,婴儿期CRH受体mRNA的增加为该肽在这个年龄段增强兴奋作用提供了一种机制。总之,越来越多的证据表明,出生后早期对应激的反应和适应存在多个控制点。下丘脑和杏仁核中的CRH合成、其对GC反馈的敏感性,以及边缘中枢神经系统和垂体中至少两种不同CRH受体的丰度和分布均受到发育调控。所有这些都作为控制点,允许对压力环境线索做出有效的内分泌、自主和行为反应。