Boon Eva, Halary Sébastien, Bapteste Eric, Hijri Mohamed
Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Quebec, Canada
Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Quebec, Canada.
Genome Biol Evol. 2015 Jan 7;7(2):505-21. doi: 10.1093/gbe/evv002.
Although heterokaryons have been reported in nature, multicellular organisms are generally assumed genetically homogeneous. Here, we investigate the case of arbuscular mycorrhizal fungi (AMF) that form symbiosis with plant roots. The growth advantages they confer to their hosts are of great potential benefit to sustainable agricultural practices. However, measuring genetic diversity for these coenocytes is a major challenge: Within the same cytoplasm, AMF contain thousands of nuclei and show extremely high levels of genetic variation for some loci. The extent and physical location of polymorphism within and between AMF genomes is unclear. We used two complementary strategies to estimate genetic diversity in AMF, investigating polymorphism both on a genome scale and in putative single copy loci. First, we used data from whole-genome pyrosequencing of four AMF isolates to describe genetic diversity, based on a conservative network-based clustering approach. AMF isolates showed marked differences in genome-wide diversity patterns in comparison to a panel of control fungal genomes. This clustering approach further allowed us to provide conservative estimates of Rhizophagus spp. genomes sizes. Second, we designed new putative single copy genomic markers, which we investigated by massive parallel amplicon sequencing for two Rhizophagus irregularis and one Rhizophagus sp. isolates. Most loci showed high polymorphism, with up to 103 alleles per marker. This polymorphism could be distributed within or between nuclei. However, we argue that the Rhizophagus isolates under study might be heterokaryotic, at least for the putative single copy markers we studied. Considering that genetic information is the main resource for identification of AMF, we suggest that special attention is warranted for the study of these ecologically important organisms.
尽管自然界中已报道过异核体,但多细胞生物通常被认为在基因上是同质的。在此,我们研究丛枝菌根真菌(AMF)与植物根系形成共生关系的情况。它们赋予宿主的生长优势对可持续农业实践具有巨大的潜在益处。然而,测量这些多核体的遗传多样性是一项重大挑战:在同一细胞质内,AMF含有数千个细胞核,并且某些基因座显示出极高水平的遗传变异。AMF基因组内和基因组间多态性的程度及物理位置尚不清楚。我们使用两种互补策略来估计AMF的遗传多样性,在基因组规模和假定的单拷贝基因座上研究多态性。首先,我们基于一种保守的基于网络的聚类方法,利用四个AMF分离株的全基因组焦磷酸测序数据来描述遗传多样性。与一组对照真菌基因组相比,AMF分离株在全基因组多样性模式上显示出明显差异。这种聚类方法还使我们能够对根内球囊霉属物种的基因组大小进行保守估计。其次,我们设计了新的假定单拷贝基因组标记,并通过大规模平行扩增子测序对两个不规则根内球囊霉和一个根内球囊霉属分离株进行研究。大多数基因座显示出高度多态性,每个标记多达103个等位基因。这种多态性可能分布在细胞核内或细胞核间。然而,我们认为所研究的根内球囊霉分离株可能是异核体,至少对于我们研究的假定单拷贝标记是如此。鉴于遗传信息是鉴定AMF的主要资源,我们建议对这些具有重要生态意义的生物体的研究给予特别关注。