Department of Biology, University of Ottawa, Ottawa, ON, K1N9A7, Canada.
Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Laboratoire D'excellence Recherches Avancées sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (ARBRE), Centre INRA-Grand Est-Nancy, Champenoux, 54280, France.
New Phytol. 2018 Dec;220(4):1161-1171. doi: 10.1111/nph.14989. Epub 2018 Jan 22.
Arbuscular mycorrhizal fungi (AMF) are known to improve plant fitness through the establishment of mycorrhizal symbioses. Genetic and phenotypic variations among closely related AMF isolates can significantly affect plant growth, but the genomic changes underlying this variability are unclear. To address this issue, we improved the genome assembly and gene annotation of the model strain Rhizophagus irregularis DAOM197198, and compared its gene content with five isolates of R. irregularis sampled in the same field. All isolates harbor striking genome variations, with large numbers of isolate-specific genes, gene family expansions, and evidence of interisolate genetic exchange. The observed variability affects all gene ontology terms and PFAM protein domains, as well as putative mycorrhiza-induced small secreted effector-like proteins and other symbiosis differentially expressed genes. High variability is also found in active transposable elements. Overall, these findings indicate a substantial divergence in the functioning capacity of isolates harvested from the same field, and thus their genetic potential for adaptation to biotic and abiotic changes. Our data also provide a first glimpse into the genome diversity that resides within natural populations of these symbionts, and open avenues for future analyses of plant-AMF interactions that link AMF genome variation with plant phenotype and fitness.
丛枝菌根真菌 (AMF) 通过建立菌根共生关系来提高植物的适应性。密切相关的 AMF 分离株之间的遗传和表型变异会显著影响植物的生长,但这种变异性的基因组变化尚不清楚。为了解决这个问题,我们改进了模式菌株 Rhizophagus irregularis DAOM197198 的基因组组装和基因注释,并将其基因内容与在同一地点采样的五个 R. irregularis 分离株进行了比较。所有分离株都具有显著的基因组变异,存在大量的分离株特异性基因、基因家族扩张以及种间遗传交换的证据。观察到的可变性影响所有基因本体论术语和 PFAM 蛋白质结构域,以及假定的菌根诱导的小分泌效应子样蛋白和其他共生差异表达基因。活跃的转座元件也存在高度的可变性。总的来说,这些发现表明从同一地点采集的分离株的功能能力存在很大差异,因此它们具有适应生物和非生物变化的遗传潜力。我们的数据还首次揭示了这些共生体自然种群中存在的基因组多样性,并为未来分析 AMF 基因组变异与植物表型和适应性之间的联系开辟了途径。