Yi Ling, Kaler Stephen G
Section on Translational Neuroscience, Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3754, USA.
Section on Translational Neuroscience, Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3754, USA
Hum Mol Genet. 2015 May 1;24(9):2411-25. doi: 10.1093/hmg/ddv002. Epub 2015 Jan 7.
ATP7A is a P-type ATPase in which diverse mutations lead to X-linked recessive Menkes disease or occipital horn syndrome. Recently, two previously unknown ATP7A missense mutations, T994I and P1386S, were shown to cause an isolated distal motor neuropathy without clinical or biochemical features of other ATP7A disorders. These mutant alleles cause subtle defects in ATP7A intracellular trafficking, resulting in preferential plasma membrane localization compared with wild-type ATP7A. We reported previously that ATP7A(P1386S) causes unstable insertion of the eighth and final transmembrane segment, preventing proper position of the carboxyl-terminal tail in a proportion of mutant molecules. Here, we utilize this and other naturally occurring and engineered mutant ATP7A alleles to identify mechanisms of normal ATP7A trafficking. We show that adaptor protein (AP) complexes 1 and 2 physically interact with ATP7A and that binding is mediated in part by a carboxyl-terminal di-leucine motif. In contrast to other ATP7A missense mutations, ATP7A(P1386S) partially disturbs interactions with both APs, leading to abnormal axonal localization in transfected NSC-34 motor neurons and altered calcium-signaling following glutamate stimulation. Our results imply that AP-1 normally tethers ATP7A at the trans-Golgi network in the somatodendritic segments of motor neurons and that alterations affecting the ATP7A carboxyl-terminal tail induce release of the copper transporter to the axons or axonal membranes. The latter effects are intensified by diminished interaction with AP-2, impeding ATP7A retrograde trafficking. Taken together, these findings further illuminate the normal molecular mechanisms of ATP7A trafficking and suggest a pathophysiological basis for ATP7A-related distal motor neuropathy.
ATP7A是一种P型ATP酶,多种突变可导致X连锁隐性门克斯病或枕角综合征。最近,两个先前未知的ATP7A错义突变T994I和P1386S被证明可导致孤立的远端运动神经病,而无其他ATP7A疾病的临床或生化特征。这些突变等位基因在ATP7A细胞内运输中造成细微缺陷,与野生型ATP7A相比,导致其优先定位于质膜。我们之前报道过,ATP7A(P1386S)会导致第八个也是最后一个跨膜片段插入不稳定,从而使一部分突变分子的羧基末端尾部无法正确定位。在此,我们利用这种以及其他天然存在和工程改造的突变ATP7A等位基因来确定ATP7A正常运输的机制。我们发现衔接蛋白(AP)复合物1和2与ATP7A发生物理相互作用,且这种结合部分由羧基末端双亮氨酸基序介导。与其他ATP7A错义突变不同,ATP7A(P1386S)会部分干扰与两种AP的相互作用,导致转染的NSC-34运动神经元中轴突定位异常,并在谷氨酸刺激后改变钙信号。我们的结果表明,AP-1通常在运动神经元的树突体节段的反式高尔基体网络处束缚ATP7A,而影响ATP7A羧基末端尾部的改变会促使铜转运蛋白释放到轴突或轴突膜上。与AP-2相互作用的减弱会加剧后者的影响,阻碍ATP7A的逆行运输。综上所述,这些发现进一步阐明了ATP7A运输的正常分子机制,并为ATP7A相关的远端运动神经病提出了病理生理学基础。