Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA.
J Neurochem. 2013 Dec;127(5):605-19. doi: 10.1111/jnc.12438. Epub 2013 Oct 13.
Copper (Cu), an essential trace element present throughout the mammalian nervous system, is crucial for normal synaptic function. Neuronal handling of Cu is poorly understood. We studied the localization and expression of Atp7a, the major intracellular Cu transporter in the brain, and its relation to peptidylglycine α-amidating monooxygenase (PAM), an essential cuproenzyme and regulator of Cu homeostasis in neuroendocrine cells. Based on biochemical fractionation and immunostaining of dissociated neurons, Atp7a was enriched in post-synaptic vesicular fractions. Cu followed a similar pattern, with ~ 20% of total Cu in synaptosomes. A mouse model heterozygous for the Pam gene (PAM+/−) was selectively Cu deficient in the amygdala. As in cortex and hippocampus, Atp7a and PAM expression overlap in the amygdala, with highest expression in interneurons. Messenger RNA levels of Atox-1 and Atp7a, which deliver Cu to the secretory pathway, were reduced in the amygdala but not in the hippocampus in PAM+/− mice, GABAB receptor mRNA levels were similarly affected. Consistent with Cu deficiency, dopamine β-monooxygenase function was impaired as evidenced by elevated dopamine metabolites in the amygdala, but not in the hippocampus, of PAM+/− mice. These alterations in Cu delivery to the secretory pathway in the PAM+/− amygdala may contribute to the physiological and behavioral deficits observed. Atp7a, a Cu-transporting P-type ATPase, is localized to the trans-Golgi network and to vesicles distributed throughout the dendritic arbor. Tissue-specific alterations in Atp7a expression were found in mice heterozygous for peptidylglycine α-amidating monooxygenase (PAM), an essential neuropeptide-synthesizing cuproenzyme. Atp7a and PAM are highly expressed in amygdalar interneurons. Reduced amygdalar expression of Atox-1 and Atp7a in PAM heterozygous mice may lead to reduced synaptic Cu levels, contributing to the behavioral and neurochemical alterations seen in these mice.
铜(Cu)是哺乳动物神经系统中存在的一种必需微量元素,对正常突触功能至关重要。神经元对 Cu 的处理知之甚少。我们研究了 Atp7a 的定位和表达,Atp7a 是大脑中主要的细胞内 Cu 转运体,及其与肽基甘氨酸 α-酰胺化单加氧酶(PAM)的关系,PAM 是一种必需的铜酶,也是神经内分泌细胞中 Cu 稳态的调节剂。基于分离神经元的生化分级分离和免疫染色,Atp7a 富含突触后囊泡级分。Cu 也呈现出类似的模式,突触体中约有 20%的总 Cu。Pam 基因杂合子(PAM+/−)的小鼠模型在杏仁核中选择性 Cu 缺乏。与皮质和海马体一样,Atp7a 和 PAM 在杏仁核中表达重叠,在中间神经元中表达最高。Atp7a 和 Atp7a 将 Cu 递送至分泌途径的信使 RNA 水平在 PAM+/− 小鼠的杏仁核中降低,但在海马体中没有降低,GABAB 受体 mRNA 水平也受到类似影响。与 Cu 缺乏一致,多巴胺 β-单加氧酶功能受损,证据是 PAM+/− 小鼠的杏仁核中多巴胺代谢物升高,但在海马体中没有升高。PAM+/− 杏仁核中向分泌途径输送 Cu 的这种改变可能导致观察到的生理和行为缺陷。Atp7a 是一种 Cu 转运 P 型 ATP 酶,定位于反式高尔基体网络和分布在树突状树突中的囊泡中。在肽基甘氨酸 α-酰胺化单加氧酶(PAM)杂合子的小鼠中发现了 Atp7a 表达的组织特异性改变,PAM 是一种必需的神经肽合成铜酶。Atp7a 和 PAM 在杏仁核中间神经元中高度表达。PAM 杂合子小鼠杏仁核中 Atox-1 和 Atp7a 的表达减少可能导致突触 Cu 水平降低,导致这些小鼠出现行为和神经化学改变。