Amity Institute of Biotechnology, Amity University, Kolkata, India.
Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, India.
Metallomics. 2023 Sep 5;15(9). doi: 10.1093/mtomcs/mfad051.
Mutational inactivation of the P-type Cu-ATPase ATP7B interferes with its cellular functions to varying extent leading to varied cellular phenotypes. Wilson's disease (WD) primarily affects organs composed of polarized/differentiated epithelial cells. Therefore, phenotypic variability might differ depending on the polarization/differentiation of the cells. The present study investigates the intracellular stability and localization of ATP7B harboring WD mutations in both unpolarized/undifferentiated and polarized/differentiated cell-based models. Green fluorescent protein (GFP)-ATP7B harboring the WD causing mutations, N41S, S653Y, R778Q, G1061E, H1069Q, S1423N, S1426I, and T1434M, are included for investigation. The C-terminal WD mutations (S1423N, S1426I, and T1434M), exhibit distinct localization and Cu(I) responsive anterograde and retrograde trafficking in undifferentiated/unpolarized vs. differentiated/polarized cells. While basal localization of the S1423N mutant gets corrected in the differentiated glia, its Cu(I) responsive anterograde and retrograde trafficking behavior is not identical to the wild-type. But localization and trafficking properties are completely rescued for the S1426I and T1434M mutants in the differentiated cells. Comprehensive meta-analysis on the effect of the reported C-terminal mutations on patient phenotype and cultured cells demonstrate discrete regions having distinct effects. While mutations in the proximal C-terminus affect ATP7B stability, the present study shows that the distal region dictates cell-specific Trans Golgi Network (TGN) localization and exit. The localization and export properties are corrected in the differentiated cells, which is a plausible mechanism for the milder phenotype exhibited by these mutations. It highlights the critical role of the C-terminus in cell-specific TGN retention and exit of ATP7B.
P 型铜转运 ATP 酶 ATP7B 的突变失活在不同程度上干扰其细胞功能,导致不同的细胞表型。威尔逊病(WD)主要影响由极化/分化的上皮细胞组成的器官。因此,表型的可变性可能因细胞的极化/分化而异。本研究在非极化/未分化和极化/分化的细胞模型中研究了携带 WD 突变的 ATP7B 的细胞内稳定性和定位。包含携带 WD 致病突变的绿色荧光蛋白(GFP)-ATP7B,包括 N41S、S653Y、R778Q、G1061E、H1069Q、S1423N、S1426I 和 T1434M。C 端 WD 突变(S1423N、S1426I 和 T1434M)在未分化/非极化与分化/极化细胞中表现出不同的定位和 Cu(I)响应的顺行和逆行运输。虽然 S1423N 突变体的基础定位在分化的神经胶质中得到纠正,但它的 Cu(I)响应的顺行和逆行运输行为与野生型不同。但 S1426I 和 T1434M 突变体在分化细胞中的定位和运输特性完全得到恢复。对报告的 C 端突变对患者表型和培养细胞的影响的综合荟萃分析表明,不同区域具有不同的影响。虽然近端 C 端的突变影响 ATP7B 的稳定性,但本研究表明,远端区域决定了细胞特异性的反式高尔基网络(TGN)定位和出口。在分化细胞中,定位和出口特性得到纠正,这是这些突变表现出较轻表型的一种可能机制。它强调了 C 端在 ATP7B 细胞特异性 TGN 保留和出口中的关键作用。