Suppr超能文献

低温电刺激缓解对氟硝基苯矿化的微温抑制。

The relief of microtherm inhibition for p-fluoronitrobenzene mineralization using electrical stimulation at low temperatures.

机构信息

School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.

出版信息

Appl Microbiol Biotechnol. 2015 May;99(10):4485-94. doi: 10.1007/s00253-014-6357-4. Epub 2015 Jan 11.

Abstract

Low temperature aggravates biological treatment of refractory p-fluoronitrobenzene (p-FNB) because of microtherm inhibition of microbial activity. Considering the potential characterization of energy supply for microbial metabolism and spurring microbial activity by electrical stimulation, a bioelectrochemical system (BES) was established to provide sustaining electrical stimulation for p-FNB mineralization at a low temperature. Electrical stimulation facilitated p-FNB treatment and bioelectrochemical reaction rate constants for the removal and defluorination of p-FNB at 10 °C were 0.0931 and 0.0054 h(-1), which were higher than the sums of the rates found using a biological system and an electrocatalytic system by 62.8 and 64.8%, respectively. At a low temperature, microbial activity in terms of dehydrogenase and ATPase was found to be higher with electrical stimulation, being 121.1 and 100.1% more active than that in the biological system. Moreover, stronger antioxidant ability was observed in the BES, which implied a better cold-resistance and relief of microtherm inhibition by electrical stimulation. Bacterial diversity analysis revealed a significant evolution of microbial community by electrical stimulation, and Clostridia was uniquely enriched. One bacterial sequence close to Pseudomonas became uniquely predominant, which appeared to be crucial for excellent p-FNB treatment performance in the BES at a low temperature. Economic evaluation revealed that the energy required to mineralize an extra mole of p-FNB was found to be 247 times higher by heating the system than by application of electrical stimulation. These results indicated that application of electrical stimulation is extremely promising for treating refractory waste at low temperatures.

摘要

低温会由于微生物活性的微温抑制而加剧对难生物降解的对氟硝基苯(p-FNB)的生物处理。考虑到微生物代谢能源供应的潜在特性以及电刺激对微生物活性的刺激作用,建立了一个生物电化学系统(BES),以在低温下为 p-FNB 矿化提供持续的电刺激。电刺激促进了 p-FNB 的处理,在 10°C 时,p-FNB 的去除和脱氟的生物电化学反应速率常数分别为 0.0931 和 0.0054 h(-1),分别比生物系统和电催化系统的速率总和高 62.8%和 64.8%。在低温下,发现电刺激下的脱氢酶和 ATP 酶的微生物活性更高,分别比生物系统高 121.1%和 100.1%。此外,在 BES 中观察到更强的抗氧化能力,这意味着电刺激可以更好地抵抗寒冷和缓解微温抑制。细菌多样性分析表明,电刺激引起微生物群落的显著进化,并且梭菌得到了独特的富集。一个与假单胞菌密切相关的细菌序列变得特别占优势,这似乎对在低温下的 BES 中出色的 p-FNB 处理性能至关重要。经济评估表明,与加热系统相比,通过施加电刺激来矿化额外摩尔的 p-FNB 所需的能量要高 247 倍。这些结果表明,电刺激在低温下处理难处理废物具有很大的应用潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验