Suppr超能文献

验证非电活性微生物在生物电化学系统中对难降解污染物降解的有效作用。

Validation of effective roles of non-electroactive microbes on recalcitrant contaminant degradation in bioelectrochemical systems.

机构信息

Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.

Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia.

出版信息

Environ Pollut. 2019 Jun;249:794-800. doi: 10.1016/j.envpol.2019.03.036. Epub 2019 Mar 20.

Abstract

Bioelectrochemical systems (BESs) have been widely investigated for recalcitrant waste treatment mainly because of their waste removal effectiveness. Electroactive microbes (EMs) have long been thought to contribute to the high effectiveness by interacting with electrodes via electron chains. However, this work demonstrated the dispensable role of EMs for enhanced recalcitrant contamination degradation in BESs. We revealed enhanced p-fluoronitrobenzene (p-FNB) degradation in a BES by observing a defluorination efficiency that was three times higher than that in biodegradation or electrochemical processes. Such an improvement was achieved by the collaborative roles of electrode biofilms and planktonic microbes, as their individual contributions to p-FNB degradation were found to be similarly stimulated by electricity. However, no bioelectrochemical activity was found in either the electrode biofilms or the planktonic microbes during stimulated p-FNB degradation; because no biocatalytically reductive or oxidative turnovers were observed on cyclic voltammetry curves. The non-involvement of EMs was further proven by the similar microbial community evolution for biofilms and planktonic microbes. In summary, we proposed a mechanism for indirect electrical stimulation of microbial metabolism by electrochemically generating the active mediator p-fluoroaniline (p-FA) and further degradation by a sequential combination of electrochemical p-FNB reduction and biological p-FA oxidation by non-EMs.

摘要

生物电化学系统(BES)因其对难处理废物的去除效果而被广泛研究。长期以来,人们一直认为电活性微生物(EMs)通过电子链与电极相互作用,有助于提高处理效率。然而,这项工作证明了 EMs 在 BES 中增强难降解污染物降解方面的可有可无的作用。我们通过观察比生物降解或电化学过程高三倍的脱氟效率,揭示了 BES 中增强的对氟硝基苯(p-FNB)降解。这种改进是通过电极生物膜和浮游微生物的协同作用实现的,因为发现它们对 p-FNB 降解的单独贡献同样受到电的刺激。然而,在刺激的 p-FNB 降解过程中,无论是在电极生物膜还是浮游微生物中,都没有发现生物电化学活性;因为在循环伏安曲线上没有观察到生物催化的还原或氧化反应。在 p-FNB 生物降解过程中,电活性微生物(EMs)没有参与,这进一步通过生物膜和浮游微生物的相似微生物群落演替得到证明。总之,我们提出了一种通过电化学产生活性介体对氟苯胺(p-FA)并进一步通过电化学 p-FNB 还原和非电活性微生物(EMs)的生物 p-FA 氧化的顺序组合来间接电刺激微生物代谢的机制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验