Zámocký Marcel, Hofbauer Stefan, Schaffner Irene, Gasselhuber Bernhard, Nicolussi Andrea, Soudi Monika, Pirker Katharina F, Furtmüller Paul G, Obinger Christian
Department of Chemistry, Division of Biochemistry, VIBT - Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria; Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, SK-84551 Bratislava, Slovakia.
Department of Chemistry, Division of Biochemistry, VIBT - Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria; Department for Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria.
Arch Biochem Biophys. 2015 May 15;574:108-19. doi: 10.1016/j.abb.2014.12.025. Epub 2015 Jan 7.
Four heme peroxidase superfamilies (peroxidase-catalase, peroxidase-cyclooxygenase, peroxidase-chlorite dismutase and peroxidase-peroxygenase superfamily) arose independently during evolution, which differ in overall fold, active site architecture and enzymatic activities. The redox cofactor is heme b or posttranslationally modified heme that is ligated by either histidine or cysteine. Heme peroxidases are found in all kingdoms of life and typically catalyze the one- and two-electron oxidation of a myriad of organic and inorganic substrates. In addition to this peroxidatic activity distinct (sub)families show pronounced catalase, cyclooxygenase, chlorite dismutase or peroxygenase activities. Here we describe the phylogeny of these four superfamilies and present the most important sequence signatures and active site architectures. The classification of families is described as well as important turning points in evolution. We show that at least three heme peroxidase superfamilies have ancient prokaryotic roots with several alternative ways of divergent evolution. In later evolutionary steps, they almost always produced highly evolved and specialized clades of peroxidases in eukaryotic kingdoms with a significant portion of such genes involved in coding various fusion proteins with novel physiological functions.
四个血红素过氧化物酶超家族(过氧化物酶 - 过氧化氢酶超家族、过氧化物酶 - 环氧化酶超家族、过氧化物酶 - 亚氯酸盐歧化酶超家族和过氧化物酶 - 过氧合酶超家族)在进化过程中独立产生,它们在整体折叠、活性位点结构和酶活性方面存在差异。氧化还原辅因子是血红素b或经翻译后修饰的血红素,其通过组氨酸或半胱氨酸连接。血红素过氧化物酶存在于所有生命王国中,通常催化多种有机和无机底物的单电子和双电子氧化反应。除了这种过氧化物酶活性外,不同的(亚)家族还表现出显著的过氧化氢酶、环氧化酶、亚氯酸盐歧化酶或过氧合酶活性。在此,我们描述这四个超家族的系统发育,并展示最重要的序列特征和活性位点结构。还描述了家族分类以及进化中的重要转折点。我们表明,至少有三个血红素过氧化物酶超家族具有古老的原核生物根源,并且有几种不同的进化方式。在后来的进化步骤中,它们几乎总是在真核生物王国中产生高度进化和特化的过氧化物酶分支,其中相当一部分此类基因参与编码具有新生理功能的各种融合蛋白。