Lukhovitskaya Nina I, Cowan Graham H, Vetukuri Ramesh R, Tilsner Jens, Torrance Lesley, Savenkov Eugene I
Department of Plant Biology, Uppsala BioCenter, Linnean Centre of Plant Biology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden (N.I.L., R.R.V., E.I.S.);Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, United Kingdom (G.H.C., J.T., L.T.); andBiomedical Sciences Research Complex, University of St. Andrews, Fife KY16 9ST, United Kingdom (J.T., L.T.).
Department of Plant Biology, Uppsala BioCenter, Linnean Centre of Plant Biology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden (N.I.L., R.R.V., E.I.S.);Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, United Kingdom (G.H.C., J.T., L.T.); andBiomedical Sciences Research Complex, University of St. Andrews, Fife KY16 9ST, United Kingdom (J.T., L.T.)
Plant Physiol. 2015 Mar;167(3):738-52. doi: 10.1104/pp.114.254938. Epub 2015 Jan 9.
Recently, it has become evident that nucleolar passage of movement proteins occurs commonly in a number of plant RNA viruses that replicate in the cytoplasm. Systemic movement of Potato mop-top virus (PMTV) involves two viral transport forms represented by a complex of viral RNA and TRIPLE GENE BLOCK1 (TGB1) movement protein and by polar virions that contain the minor coat protein and TGB1 attached to one extremity. The integrity of polar virions ensures the efficient movement of RNA-CP, which encodes the virus coat protein. Here, we report the involvement of nuclear transport receptors belonging to the importin-α family in nucleolar accumulation of the PMTV TGB1 protein and, subsequently, in the systemic movement of the virus. Virus-induced gene silencing of two importin-α paralogs in Nicotiana benthamiana resulted in significant reduction of TGB1 accumulation in the nucleus, decreasing the accumulation of the virus progeny in upper leaves and the loss of systemic movement of RNA-CP. PMTV TGB1 interacted with importin-α in N. benthamiana, which was detected by bimolecular fluorescence complementation in the nucleoplasm and nucleolus. The interaction was mediated by two nucleolar localization signals identified by bioinformatics and mutagenesis in the TGB1 amino-terminal domain. Our results showed that while TGB1 self-interaction is needed for cell-to-cell movement, importin-α-mediated nucleolar targeting of TGB1 is an essential step in establishing the efficient systemic infection of the entire plant. These results enabled the identification of two separate domains in TGB1: an internal domain required for TGB1 self-interaction and cell-to-cell movement and the amino-terminal domain required for importin-α interaction in plants, nucleolar targeting, and long-distance movement.
最近,越来越明显的是,运动蛋白在核仁中的运输在许多在细胞质中复制的植物RNA病毒中普遍存在。马铃薯帚顶病毒(PMTV)的系统运动涉及两种病毒运输形式,一种是以病毒RNA与三重基因块1(TGB1)运动蛋白的复合物为代表,另一种是以极性病毒粒子为代表,该粒子含有小衣壳蛋白和附着在一端的TGB1。极性病毒粒子的完整性确保了编码病毒衣壳蛋白的RNA-CP的有效运输。在这里,我们报告了属于输入蛋白-α家族的核运输受体参与PMTV TGB1蛋白在核仁中的积累,以及随后参与病毒的系统运动。在本氏烟草中对两个输入蛋白-α旁系同源物进行病毒诱导的基因沉默,导致TGB1在细胞核中的积累显著减少,病毒后代在上部叶片中的积累减少,以及RNA-CP系统运动的丧失。PMTV TGB1在本氏烟草中与输入蛋白-α相互作用,通过双分子荧光互补在核质和核仁中检测到这种相互作用。这种相互作用由通过生物信息学和诱变在TGB1氨基末端结构域中鉴定的两个核仁定位信号介导。我们的结果表明,虽然TGB1自身相互作用是细胞间运动所必需的,但输入蛋白-α介导的TGB1核仁靶向是建立整个植物有效系统感染的关键步骤。这些结果使得能够在TGB1中鉴定出两个独立的结构域:TGB1自身相互作用和细胞间运动所需的内部结构域,以及植物中输入蛋白-α相互作用、核仁靶向和长距离运动所需的氨基末端结构域。