Gregory Nicholas S, Brito Renan G, Fusaro Maria Cláudia G Oliveira, Sluka Kathleen A
Neuroscience Graduate Program, Pain Research Program, Department of Physical Therapy and Rehabilitation Science, University of Iowa, 1-248 MEB, Iowa City, IA, 52242, USA.
Department of Physiology, Federal University of Sergipe, Aracaju, Brazil.
Mol Neurobiol. 2016 Mar;53(2):1020-1030. doi: 10.1007/s12035-014-9055-4. Epub 2015 Jan 11.
An acute bout of exercise can exacerbate pain, hindering participation in regular exercise and daily activities. The mechanisms underlying pain in response to acute exercise are poorly understood. We hypothesized that proton accumulation during muscle fatigue activates acid-sensing ion channel 3 (ASIC3) on muscle nociceptors to produce hyperalgesia. We investigated the role of ASIC3 using genetic and pharmacological approaches in a model of fatigue-enhanced hyperalgesia. This model uses two injections of pH 5.0 saline into muscle in combination with an electrically induced fatigue of the same muscle just prior to the second injection of acid to induce mechanical hyperalgesia. We show a significant decrease in muscle force and decrease in muscle pH after 6 min of electrical stimulation. Genetic deletion of ASIC3 using knockout mice and pharmacological blockade of ASIC3 with APETx2 in muscle prevents the fatigue-enhanced hyperalgesia. However, ASIC3(-/-) mice and APETx2 have no effect on the fatigue response. Genetic deletion of ASIC3 in primary afferents innervating muscle using an HSV-1 expressing microRNA (miRNA) to ASIC3 surprisingly had no effect on the development of the hyperalgesia. Muscle fatigue increased the number of macrophages in muscle, and removal of macrophages from muscle with clodronate liposomes prevented the development of fatigue-enhanced hyperalgesia. Thus, these data suggest that fatigue reduces pH in muscle that subsequently activates ASIC3 on macrophages to enhance hyperalgesia to muscle insult.
一次急性运动发作会加剧疼痛,阻碍人们参与常规运动和日常活动。急性运动引发疼痛的潜在机制目前尚不清楚。我们推测,肌肉疲劳期间质子的积累会激活肌肉伤害感受器上的酸敏感离子通道3(ASIC3),从而产生痛觉过敏。我们在疲劳增强性痛觉过敏模型中使用基因和药理学方法研究了ASIC3的作用。该模型是在第二次注射酸之前,先向肌肉注射两次pH 5.0的生理盐水,并对同一块肌肉进行电诱导疲劳,以诱发机械性痛觉过敏。我们发现,电刺激6分钟后肌肉力量显著下降,肌肉pH值降低。使用基因敲除小鼠对ASIC3进行基因敲除,以及在肌肉中用APETx2对ASIC3进行药理学阻断,均可预防疲劳增强性痛觉过敏。然而,ASIC3基因敲除小鼠和APETx2对疲劳反应没有影响。令人惊讶的是,使用表达针对ASIC3的微小RNA(miRNA)的单纯疱疹病毒1(HSV-1)对支配肌肉的初级传入神经中的ASIC3进行基因敲除,对痛觉过敏的发展没有影响。肌肉疲劳增加了肌肉中巨噬细胞的数量,用氯膦酸脂质体从肌肉中清除巨噬细胞可预防疲劳增强性痛觉过敏的发展。因此,这些数据表明,疲劳会降低肌肉中的pH值,随后激活巨噬细胞上的ASIC3,从而增强对肌肉损伤的痛觉过敏。