Suppr超能文献
Abstract

Contaminated surfaces in healthcare facilities may contribute to the transmission of pathogens implicated in nosocomial infections, such as , methicillin resistant (MRSA), vancomycin resistant (VRE), gram-negative rods (. and and Norovirus. While patient rooms are regularly cleaned and disinfected using manual techniques, evidence suggests that the adequacy of cleaning is often suboptimal, particularly when the focus is only on those surfaces perceived to be high-risk or frequently contacted (high-touch). As well, when cleaning, sufficient wet contact time between the surface and disinfectant is needed to ensure adequate disinfection, but is not always achieved. Wiping of all surfaces where there is hand contact, not just those that are considered to be high risk or high-touch areas, and ensuring adequate wet contact time is required for adequate disinfection of the patient environment. Inadequate cleaning using manual techniques prompted the development of no-touch systems that can decontaminate objects and surfaces in the patient environment. These technologies employ the use of ultraviolet (UV) light or hydrogen peroxide. There are two systems that use vaporized hydrogen peroxide (VHP) in a dry or wet aerosol and one that uses a hydrogen peroxide mist (HPM), which has a larger particle size. VHP or HPM is produced using a portable generator that quickly increases the concentration of hydrogen peroxide in the room during a decontamination phase which is repeated several times. The process takes approximately two to six hours per room. The UV light systems emit UV light from portable automated units at a wave-length that is germicidal. The unit is placed in a vacant patient room in the centre and can be piloted with a remote to ensure all surfaces are reached as they must be in the line of site to be decontaminated. The units have sensors which stop the irradiation should the door be opened. The process of decontamination takes approximately 45 minutes. One application of these cleaning systems is in terminal or discharge decontamination of vacated patient rooms. They supplement, but do not replace manual cleaning of patient rooms, as surfaces must first be free of dirt and debris prior to their use. Vaporized hydrogen peroxide and UV light systems provide a higher level disinfection or decontamination of all exposed surfaces and equipment in patient rooms, and are not a standalone means of cleaning. Vaporized hydrogen peroxide has also been used for decontamination of rooms and ward spaces in an attempt to terminate outbreaks. This report will review the evidence of clinical effectiveness of non-manual systems that use UV light or vaporized hydrogen peroxide for hospital room disinfection and identify guidelines that address the use of these techniques in healthcare facilities.

摘要

相似文献

1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验