Sebestyén Endre, Zawisza Michał, Eyras Eduardo
Computational Genomics, Universitat Pompeu Fabra, Dr. Aiguader 88, E08003 Barcelona, Spain.
Universitat Politècnica de Catalunya, Jordi Girona 1-3, E08034 Barcelona, Spain.
Nucleic Acids Res. 2015 Feb 18;43(3):1345-56. doi: 10.1093/nar/gku1392. Epub 2015 Jan 10.
The determination of the alternative splicing isoforms expressed in cancer is fundamental for the development of tumor-specific molecular targets for prognosis and therapy, but it is hindered by the heterogeneity of tumors and the variability across patients. We developed a new computational method, robust to biological and technical variability, which identifies significant transcript isoform changes across multiple samples. We applied this method to more than 4000 samples from the The Cancer Genome Atlas project to obtain novel splicing signatures that are predictive for nine different cancer types, and find a specific signature for basal-like breast tumors involving the tumor-driver CTNND1. Additionally, our method identifies 244 isoform switches, for which the change occurs in the most abundant transcript. Some of these switches occur in known tumor drivers, including PPARG, CCND3, RALGDS, MITF, PRDM1, ABI1 and MYH11, for which the switch implies a change in the protein product. Moreover, some of the switches cannot be described with simple splicing events. Surprisingly, isoform switches are independent of somatic mutations, except for the tumor-suppressor FBLN2 and the oncogene MYH11. Our method reveals novel signatures of cancer in terms of transcript isoforms specifically expressed in tumors, providing novel potential molecular targets for prognosis and therapy. Data and software are available at: http://dx.doi.org/10.6084/m9.figshare.1061917 and https://bitbucket.org/regulatorygenomicsupf/iso-ktsp.
确定癌症中表达的可变剪接异构体对于开发用于预后和治疗的肿瘤特异性分子靶点至关重要,但肿瘤的异质性和患者间的变异性阻碍了这一进程。我们开发了一种新的计算方法,该方法对生物学和技术变异性具有鲁棒性,可识别多个样本中显著的转录本异构体变化。我们将此方法应用于来自癌症基因组图谱项目的4000多个样本,以获得可预测九种不同癌症类型的新型剪接特征,并发现了一种涉及肿瘤驱动因子CTNND1的基底样乳腺肿瘤的特定特征。此外,我们的方法识别出244个异构体开关,其中变化发生在最丰富的转录本中。其中一些开关发生在已知的肿瘤驱动因子中,包括PPARG、CCND3、RALGDS、MITF、PRDM1、ABI1和MYH11,这些开关意味着蛋白质产物的变化。此外,一些开关不能用简单的剪接事件来描述。令人惊讶的是,异构体开关与体细胞突变无关,除了肿瘤抑制因子FBLN2和癌基因MYH11。我们的方法揭示了肿瘤中特异性表达的转录本异构体方面的癌症新特征,为预后和治疗提供了新的潜在分子靶点。数据和软件可在以下网址获取:http://dx.doi.org/10.6084/m9.figshare.1061917和https://bitbucket.org/regulatorygenomicsupf/iso-ktsp。