Zhugayevych Andriy, Tretiak Sergei
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545; email:
Annu Rev Phys Chem. 2015 Apr;66:305-30. doi: 10.1146/annurev-physchem-040214-121440. Epub 2015 Jan 12.
We review recent progress in the modeling of organic solar cells and photovoltaic materials, as well as discuss the underlying theoretical methods with an emphasis on dynamical electronic processes occurring in organic semiconductors. The key feature of the latter is a strong electron-phonon interaction, making the evolution of electronic and structural degrees of freedom inseparable. We discuss commonly used approaches for first-principles modeling of this evolution, focusing on a multiscale framework based on the Holstein-Peierls Hamiltonian solved via polaron transformation. A challenge for both theoretical and experimental investigations of organic solar cells is the complex multiscale morphology of these devices. Nevertheless, predictive modeling of photovoltaic materials and devices is attainable and is rapidly developing, as reviewed here.
我们回顾了有机太阳能电池和光伏材料建模的最新进展,并讨论了其 underlying 理论方法,重点关注有机半导体中发生的动态电子过程。后者的关键特征是强电子 - 声子相互作用,使得电子和结构自由度的演化不可分割。我们讨论了用于这种演化的第一性原理建模的常用方法,重点是基于通过极化子变换求解的霍尔斯坦 - 佩尔斯哈密顿量的多尺度框架。有机太阳能电池的理论和实验研究面临的一个挑战是这些器件复杂的多尺度形态。尽管如此,光伏材料和器件的预测建模是可以实现的,并且正如本文所综述的那样正在迅速发展。