Ishii Hiroyuki, Obata Shigeaki, Niitsu Naoyuki, Watanabe Shun, Goto Hitoshi, Hirose Kenji, Kobayashi Nobuhiko, Okamoto Toshihiro, Takeya Jun
Department of Applied Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.
Educational Programs on Advanced Simulation Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan.
Sci Rep. 2020 Feb 17;10(1):2524. doi: 10.1038/s41598-020-59238-2.
Prediction of material properties of newly designed molecules is a long-term goal in organic electronics. In general, it is a difficult problem, because the material properties are dominated by the unknown packing structure. We present a practical method to obtain charge transport properties of organic single crystals, without use of experimental single-crystal data. As a demonstration, we employ the promising molecule C-DNBDT. We succeeded in quantitative evaluation of charge mobility of the single crystal using our quantum wave-packet dynamical simulation method. Here, the single-crystal data is computationally obtained by searching possible packing structures from structural formula of the molecule. We increase accuracy in identifying the actual crystal structure from suggested ones by using not only crystal energy but also similarity between calculated and experimental powder X-ray diffraction patterns. The proposed methodology can be a theoretical design technique for efficiently developing new high-performance organic semiconductors, since it can estimate the charge transport properties at early stage in the process of material development.
预测新设计分子的材料特性是有机电子学的一个长期目标。一般来说,这是一个难题,因为材料特性由未知的堆积结构主导。我们提出了一种实用方法,无需使用实验单晶数据就能获得有机单晶的电荷传输特性。作为演示,我们采用了有前景的分子C-DNBDT。我们使用量子波包动力学模拟方法成功地对单晶的电荷迁移率进行了定量评估。在这里,单晶数据是通过从分子的结构式搜索可能的堆积结构而通过计算获得的。我们不仅利用晶体能量,还利用计算得到的粉末X射线衍射图与实验粉末X射线衍射图之间的相似性,提高了从建议的晶体结构中识别实际晶体结构的准确性。所提出的方法可以成为一种理论设计技术,用于高效开发新型高性能有机半导体,因为它可以在材料开发过程的早期阶段估计电荷传输特性。