Mollard F P O, Naeth M A
Department of Renewable Resources, University of Alberta, Alberta, Edmonton, AB, Canada; Land Reclamation International Graduate School, University of Alberta, Edmonton, AB, Canada; Departamento de Biología Aplicada y Alimentos, Facultad de Agronomía, Universidad de Buenos Aires, Capital Federal, Argentina.
Plant Biol (Stuttg). 2015 Mar;17(2):583-7. doi: 10.1111/plb.12292. Epub 2015 Jan 9.
An untested theory states that C4 grass seeds could germinate under lower water potentials (Ψ) than C3 grass seeds. We used hydrotime modelling to study seed water relations of C4 and C3 Canadian prairie grasses to address Ψ divergent sensitivities and germination strategies along a risk-spreading continuum of responses to limited water. C4 grasses were Bouteloua gracilis, Calamovilfa longifolia and Schizachyrium scoparium; C3 grasses were Bromus carinatus, Elymus trachycaulus, Festuca hallii and Koeleria macrantha. Hydrotime parameters were obtained after incubation of non-dormant seeds under different Ψ PEG 6000 solutions. A t-test between C3 and C4 grasses did not find statistical differences in population mean base Ψ (Ψb (50)). We found idiosyncratic responses of C4 grasses along the risk-spreading continuum. B. gracilis showed a risk-taker strategy of a species able to quickly germinate in a dry soil due to its low Ψb (50) and hydrotime (θH ). The high Ψb (50) of S. scoparium indicates it follows the risk-averse strategy so it can only germinate in wet soils. C. longifolia showed an intermediate strategy: the lowest Ψb (50) yet the highest θH . K. macrantha, a C3 grass which thrives in dry habitats, had the highest Ψb (50), suggesting a risk-averse strategy for a C3 species. Other C3 species showed intermediate germination patterns in response to Ψ relative to C4 species. Our results indicate that grasses display germination sensitivities to Ψ across the risk-spreading continuum of responses. Thus seed water relations may be poor predictors to explain differential recruitment and distribution of C3 and C4 grasses in the Canadian prairies.
一种未经检验的理论认为,C4 草种子在比 C3 草种子更低的水势(Ψ)下就能发芽。我们使用水时模型来研究加拿大草原 C4 和 C3 草的种子水分关系,以探讨在对有限水分的风险扩散连续响应中 Ψ 的不同敏感性和萌发策略。C4 草包括细茎针茅、长叶沙鞭和糙毛裂稃草;C3 草包括隆脊雀麦、糙野麦、哈氏羊茅和大穗臭草。在将非休眠种子置于不同 Ψ 的聚乙二醇 6000 溶液中培养后,获得了水时参数。对 C3 和 C4 草进行 t 检验,未发现群体平均基础 Ψ(Ψb(50))存在统计学差异。我们发现 C4 草在风险扩散连续体上有独特的响应。细茎针茅表现出一种冒险者策略,由于其低 Ψb(50)和水时(θH),该物种能够在干燥土壤中快速发芽。糙毛裂稃草的高 Ψb(50)表明它遵循规避风险策略,因此只能在湿润土壤中发芽。长叶沙鞭表现出一种中间策略:Ψb(50)最低,但 θH 最高。大穗臭草是一种在干燥生境中生长旺盛的 C3 草,其 Ψb(50)最高,表明 C3 物种采取了规避风险策略。相对于 C4 物种,其他 C3 物种对 Ψ 表现出中间萌发模式。我们的结果表明,草在风险扩散连续响应中对 Ψ 表现出发芽敏感性。因此,种子水分关系可能不是解释加拿大草原 C3 和 C4 草不同补充和分布的良好预测指标