Logsdon Benjamin A, Gentles Andrew J, Miller Chris P, Blau C Anthony, Becker Pamela S, Lee Su-In
Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA Sage Bionetworks, Seattle, WA, 98109, USA.
Center for Cancer Systems Biology, Department of Radiology, Stanford University, CA, 94305, USA.
Nucleic Acids Res. 2015 Feb 18;43(3):1332-44. doi: 10.1093/nar/gku1290. Epub 2015 Jan 12.
We define a new category of candidate tumor drivers in cancer genome evolution: 'selected expression regulators' (SERs)-genes driving dysregulated transcriptional programs in cancer evolution. The SERs are identified from genome-wide tumor expression data with a novel method, namely SPARROW ( SPAR: se selected exp R: essi O: n regulators identified W: ith penalized regression). SPARROW uncovers a previously unknown connection between cancer expression variation and driver events, by using a novel sparse regression technique. Our results indicate that SPARROW is a powerful complementary approach to identify candidate genes containing driver events that are hard to detect from sequence data, due to a large number of passenger mutations and lack of comprehensive sequence information from a sufficiently large number of samples. SERs identified by SPARROW reveal known driver mutations in multiple human cancers, along with known cancer-associated processes and survival-associated genes, better than popular methods for inferring gene expression networks. We demonstrate that when applied to acute myeloid leukemia expression data, SPARROW identifies an apoptotic biomarker (PYCARD) for an investigational drug obatoclax. The PYCARD and obatoclax association is validated in 30 AML patient samples.
“选择性表达调节因子”(SERs)——即在癌症进化过程中驱动转录程序失调的基因。SERs是通过一种名为SPARROW(SPAR:选择性表达;R:调节因子;O:通过惩罚回归识别;W:表达)的新方法从全基因组肿瘤表达数据中识别出来的。SPARROW通过使用一种新颖的稀疏回归技术,揭示了癌症表达变异与驱动事件之间以前未知的联系。我们的结果表明,由于存在大量乘客突变且缺乏来自足够大量样本的全面序列信息,SPARROW是一种强大的补充方法,可用于识别包含难以从序列数据中检测到的驱动事件的候选基因。与推断基因表达网络的常用方法相比,SPARROW识别出的SERs能更好地揭示多种人类癌症中已知的驱动突变,以及已知的癌症相关过程和生存相关基因。我们证明,当应用于急性髓系白血病表达数据时,SPARROW识别出了一种用于研究药物 obatoclax 的凋亡生物标志物(PYCARD)。PYCARD与obatoclax之间的关联在30个急性髓系白血病患者样本中得到了验证。