Suppr超能文献

脑连接网络中路径长度的遗传学:基于高分辨率扩散成像的457名成年人脑图谱

Genetics of Path Lengths in Brain Connectivity Networks: HARDI-Based Maps in 457 Adults.

作者信息

Jahanshad Neda, Prasad Gautam, Toga Arthur W, McMahon Katie L, de Zubicaray Greig I, Martin Nicholas G, Wright Margaret J, Thompson Paul M

机构信息

Imaging Genetics Center - Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Los Angeles, CA.

University of Queensland, Centre for Advanced Imaging, Brisbane, Australia.

出版信息

Multimodal Brain Image Anal (2012). 2012;7509:29-40. doi: 10.1007/978-3-642-33530-3_3.

Abstract

Brain connectivity analyses are increasingly popular for investigating organization. Many connectivity measures including path lengths are generally defined as the number of nodes traversed to connect a node in a graph to the others. Despite its name, path length is purely topological, and does not take into account the physical length of the connections. The distance of the trajectory may also be highly relevant, but is typically overlooked in connectivity analyses. Here we combined genotyping, anatomical MRI and HARDI to understand how our genes influence the cortical connections, using whole-brain tractography. We defined a new measure, based on Dijkstra's algorithm, to compute path lengths for tracts connecting pairs of cortical regions. We compiled these measures into matrices where elements represent the physical distance traveled along tracts. We then analyzed a large cohort of healthy twins and show that our path length measure is reliable, heritable, and influenced even in young adults by the Alzheimer's risk gene, .

摘要

脑连接性分析在研究脑组织结构方面越来越受欢迎。许多连接性测量指标,包括路径长度,通常被定义为在图中连接一个节点与其他节点所经过的节点数量。尽管名为路径长度,但它纯粹是拓扑学上的,并未考虑连接的物理长度。轨迹的距离可能也高度相关,但在连接性分析中通常被忽视。在这里,我们结合基因分型、解剖磁共振成像和高分辨率扩散成像,利用全脑纤维束成像来了解我们的基因如何影响皮质连接。我们基于迪杰斯特拉算法定义了一种新的测量方法,以计算连接成对皮质区域的纤维束的路径长度。我们将这些测量指标整理成矩阵,其中元素代表沿纤维束行进的物理距离。然后,我们分析了一大群健康双胞胎,结果表明我们的路径长度测量方法是可靠的、可遗传的,并且即使在年轻人中也受到阿尔茨海默病风险基因的影响。

相似文献

6
TRACTOGRAPHY DENSITY AND NETWORK MEASURES IN ALZHEIMER'S DISEASE.阿尔茨海默病中的纤维束成像密度及网络测量
Proc IEEE Int Symp Biomed Imaging. 2013 Apr;2013:692-695. doi: 10.1109/ISBI.2013.6556569.

引用本文的文献

6
Genetics of the connectome.连接组学的遗传学。
Neuroimage. 2013 Oct 15;80:475-88. doi: 10.1016/j.neuroimage.2013.05.013. Epub 2013 May 21.

本文引用的文献

1
Test-retest reliability of graph theory measures of structural brain connectivity.脑结构连接性的图论测量方法的重测信度。
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):305-12. doi: 10.1007/978-3-642-33454-2_38.
5
Brain network local interconnectivity loss in aging APOE-4 allele carriers.衰老 APOE-4 等位基因携带者的脑网络局部连通性丧失。
Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20760-5. doi: 10.1073/pnas.1109038108. Epub 2011 Nov 21.
9
Complex network measures of brain connectivity: uses and interpretations.脑连接复杂网络度量:用途与解读。
Neuroimage. 2010 Sep;52(3):1059-69. doi: 10.1016/j.neuroimage.2009.10.003. Epub 2009 Oct 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验