Integrative Systems Biology, Department of Biomedical Engineering, Linköping University, Linköping, Sweden; CVMD iMED DMPK AstraZeneca R&D, Mölndal, Sweden.
FEBS J. 2015 Mar;282(5):951-62. doi: 10.1111/febs.13194. Epub 2015 Feb 6.
The β-adrenergic response is impaired in failing hearts. When studying β-adrenergic function in vitro, the half-maximal effective concentration (EC50 ) is an important measure of ligand response. We previously measured the in vitro contraction force response of chicken heart tissue to increasing concentrations of adrenaline, and observed a decreasing response at high concentrations. The classical interpretation of such data is to assume a maximal response before the decrease, and to fit a sigmoid curve to the remaining data to determine EC50 . Instead, we have applied a mathematical modeling approach to interpret the full dose-response curve in a new way. The developed model predicts a non-steady-state caused by a short resting time between increased concentrations of agonist, which affect the dose-response characterization. Therefore, an improved estimate of EC50 may be calculated using steady-state simulations of the model. The model-based estimation of EC50 is further refined using additional time-resolved data to decrease the uncertainty of the prediction. The resulting model-based EC50 (180-525 nm) is higher than the classically interpreted EC50 (46-191 nm). Mathematical modeling thus makes it possible to re-interpret previously obtained datasets, and to make accurate estimates of EC50 even when steady-state measurements are not experimentally feasible.
The mathematical models described here have been submitted to the JWS Online Cellular Systems Modelling Database, and may be accessed at http://jjj.bio.vu.nl/database/nyman.
衰竭心脏的β-肾上腺素能反应受损。在体外研究β-肾上腺素能功能时,半最大有效浓度(EC50)是配体反应的重要衡量标准。我们之前测量了鸡心组织对递增浓度肾上腺素的体外收缩力反应,观察到高浓度时反应逐渐减弱。此类数据的经典解释是假设在下降之前存在最大反应,并拟合剩余数据的 S 型曲线以确定 EC50。相反,我们采用了一种数学建模方法来以新的方式解释完整的剂量反应曲线。所开发的模型预测由于激动剂浓度增加之间的短暂休息时间会导致非稳态,这会影响剂量反应特性。因此,可以使用模型的稳态模拟来计算 EC50 的改进估计值。使用额外的时间分辨数据进一步细化基于模型的 EC50 估计值,以降低预测的不确定性。由此产生的基于模型的 EC50(180-525nm)高于经典解释的 EC50(46-191nm)。因此,数学建模使得重新解释先前获得的数据集成为可能,并且即使在稳态测量在实验上不可行的情况下,也可以对 EC50 进行准确估计。
这里描述的数学模型已提交给 JWS 在线细胞系统建模数据库,并可在 http://jjj.bio.vu.nl/database/nyman 上访问。