Ozawa Hironobu, Yamamoto Yasuyuki, Kawaguchi Hiroki, Shimizu Ryosuke, Arakawa Hironori
Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science , 12-1, Ichigaya-Funagawara, Shinjuku, Tokyo, 162-0826, Japan.
ACS Appl Mater Interfaces. 2015 Feb 11;7(5):3152-61. doi: 10.1021/am507442s. Epub 2015 Jan 27.
Two novel ruthenium sensitizers with a hexylthiophene-modified terpyridine ligand (TUS-35 and TUS-36) were synthesized to improve the molar absorptivity of the previously reported ruthenium sensitizer (TBA)[Ru{4'-(3,4-dicarboxyphenyl)-4,4″-dicarboxyterpyridine}(NCS)3], TBA = tetrabutylammonium (TUS-21). A relatively strong absorption appeared at ∼380 nm, and the molar absorption coefficient at the metal-to-ligand charge transfer (MLCT) band decreased in TUS-35 by introducing a 2-hexylthiophene unit to the 5-position of the terpyridine-derived ligand. For comparison, a relatively strong absorption was observed at ∼350 nm without decreasing the molar absorption coefficient at the MLCT band in TUS-36 by introducing a 2-hexylthiophene unit to the 4-position of the terpyridine-derived ligand. On the other hand, the energy levels of the highest occupied molecular orbitals and the lowest unoccupied molecular orbitals of these two sensitizers were found to be almost equal to those of TUS-21. The adsorption behavior of TUS-35 and TUS-36 was similar to that of (TBA)[Ru{4'-(3,4-dicarboxyphenyl)terpyridine}(NCS)3] (TUS-20), which binds to the TiO2 surface by using the 3,4-dicarboxyphenly unit, rather than that of TUS-21, which adsorbs to the TiO2 photoelectrode using one of the carboxyl groups at the terminal pyridines of the terpyridine-derived ligand. Therefore, TUS-35 and TUS-36 are considered to bind to the TiO2 surface by using the 3,4-dicarboxyphenly unit just like TUS-20. The dye-sensitized solar cells (DSCs) with TUS-35 and TUS-36 showed a relatively lower conversion efficiency (6.4% and 5.7%, respectively) compared to the DSC with TUS-21 (10.2%). Open-circuit photovoltage decay and electrochemical impedance spectroscopy measurements revealed that the promoted charge recombination and/or charge transfer of the injected electrons in the TiO2 photoelectrode is a main reason for the inferior performances of TUS-35 and TUS-36.
合成了两种带有己基噻吩修饰的三联吡啶配体的新型钌敏化剂(TUS - 35和TUS - 36),以提高先前报道的钌敏化剂(TBA)[Ru{4'-(3,4 - 二羧基苯基)-4,4″-二羧基三联吡啶}(NCS)3](TBA = 四丁基铵,即TUS - 21)的摩尔吸光率。在约380 nm处出现了相对较强的吸收峰,通过在三联吡啶衍生配体的5位引入2 - 己基噻吩单元,TUS - 35在金属 - 配体电荷转移(MLCT)带的摩尔吸收系数降低。相比之下,通过在三联吡啶衍生配体的4位引入2 - 己基噻吩单元,TUS - 36在约350 nm处观察到相对较强的吸收,且MLCT带的摩尔吸收系数没有降低。另一方面,发现这两种敏化剂的最高占据分子轨道和最低未占据分子轨道的能级几乎与TUS - 21的相等。TUS - 35和TUS - 36的吸附行为类似于(TBA)[Ru{4'-(3,4 - 二羧基苯基)三联吡啶}(NCS)3](TUS - 20),后者通过使用3,4 - 二羧基苯基单元与TiO₂表面结合,而不像TUS - 21那样通过三联吡啶衍生配体末端吡啶上的一个羧基吸附到TiO₂光电极上。因此,TUS - 35和TUS - 36被认为像TUS - 20一样通过使用3,4 - 二羧基苯基单元与TiO₂表面结合。与使用TUS - 21的染料敏化太阳能电池(DSC)(10.2%)相比,使用TUS - 35和TUS - 36的DSC显示出相对较低的转换效率(分别为6.4%和5.7%)。开路光电压衰减和电化学阻抗谱测量表明,TiO₂光电极中注入电子的电荷复合和/或电荷转移的促进是TUS - 35和TUS - 36性能较差的主要原因。