Suppr超能文献

基于双吡啶的金属聚合物的合成及其单壁碳纳米管复合材料的热电性能

Synthesis of Bis-Terpyridine-Based Metallopolymers and the Thermoelectric Properties of Their Single Walled Carbon Nanotube Composites.

作者信息

Li Jiahua, Guo Zeling, Xu Linli, Wong Wai-Yeung

机构信息

Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.

The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China.

出版信息

Molecules. 2021 Apr 28;26(9):2560. doi: 10.3390/molecules26092560.

Abstract

Although the organic and the conventional inorganic thermoelectric (TE) materials have been extensively developed in recent years, the number of cases involving conducting metallopolymers is still quite limited. In view of the versatile coordination capability of the terpyridine fraction and the electron-rich nature of the 3,4-ethylenedioxythiophene moiety, a bis-terpyridine-featured ligand was designed, and a series of metallopolymers were then synthesized. Upon the addition of single-walled carbon nanotube (SWCNT), the TE properties of the resulting metallopolymer-SWCNT composite films were investigated. It was found that metal centres played an important role in affecting the morphology of the thin films, which was a key factor that determined the TE performances of the composites. Additionally, the energy levels of the metallopolymers were feasibly tuned by selecting different metal centres. With the combined effects of a uniform and condensed surface and an optimized band structure, the highest power factor was achieved by the Cu(II)-containing metallopolymer-SWCNT composite at the doping ratio of 75%, which reached 38.3 μW·m·K.

摘要

尽管近年来有机热电材料和传统无机热电材料得到了广泛发展,但涉及导电金属聚合物的案例数量仍然相当有限。鉴于三联吡啶部分具有多功能配位能力以及3,4-亚乙基二氧噻吩部分富含电子的性质,设计了一种具有双三联吡啶特征的配体,随后合成了一系列金属聚合物。在添加单壁碳纳米管(SWCNT)后,研究了所得金属聚合物-SWCNT复合薄膜的热电性能。发现金属中心在影响薄膜形态方面起着重要作用,而薄膜形态是决定复合材料热电性能的关键因素。此外,通过选择不同的金属中心可以合理调节金属聚合物的能级。在均匀致密表面和优化能带结构的共同作用下,含铜(II)金属聚合物-SWCNT复合材料在75%的掺杂比例下实现了最高功率因子,达到38.3 μW·m·K²。 (注:原文中“38.3 μW·m·K”表述似乎有误,推测应为“38.3 μW·m⁻¹·K⁻²”,译文已按推测修正,若实际并非如此,请根据正确原文调整)

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52ed/8124700/1b9329c4745f/molecules-26-02560-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验