Suppr超能文献

Bayclone:利用二代测序数据对肿瘤亚克隆进行贝叶斯非参数推断

Bayclone: Bayesian nonparametric inference of tumor subclones using NGS data.

作者信息

Sengupta Subhajit, Wang Jin, Lee Juhee, Müller Peter, Gulukota Kamalakar, Banerjee Arunava, Ji Yuan

机构信息

Center for Biomedical Research Informatics, NorthShore University HealthSystem, USA.

出版信息

Pac Symp Biocomput. 2015:467-78.

Abstract

In this paper, we present a novel feature allocation model to describe tumor heterogeneity (TH) using next-generation sequencing (NGS) data. Taking a Bayesian approach, we extend the Indian buffet process (IBP) to define a class of nonparametric models, the categorical IBP (cIBP). A cIBP takes categorical values to denote homozygous or heterozygous genotypes at each SNV. We define a subclone as a vector of these categorical values, each corresponding to an SNV. Instead of partitioning somatic mutations into non-overlapping clusters with similar cellular prevalences, we took a different approach using feature allocation. Importantly, we do not assume somatic mutations with similar cellular prevalence must be from the same subclone and allow overlapping mutations shared across subclones. We argue that this is closer to the underlying theory of phylogenetic clonal expansion, as somatic mutations occurred in parent subclones should be shared across the parent and child subclones. Bayesian inference yields posterior probabilities of the number, genotypes, and proportions of subclones in a tumor sample, thereby providing point estimates as well as variabilities of the estimates for each subclone. We report results on both simulated and real data. BayClone is available at http://health.bsd.uchicago.edu/yji/soft.html.

摘要

在本文中,我们提出了一种新颖的特征分配模型,用于使用下一代测序(NGS)数据描述肿瘤异质性(TH)。采用贝叶斯方法,我们扩展了印度自助餐过程(IBP)以定义一类非参数模型,即分类IBP(cIBP)。cIBP采用分类值来表示每个单核苷酸变异(SNV)处的纯合或杂合基因型。我们将一个亚克隆定义为这些分类值的向量,每个分类值对应一个SNV。我们没有将体细胞突变划分为具有相似细胞丰度的不重叠簇,而是采用了一种不同的特征分配方法。重要的是,我们不假设具有相似细胞丰度的体细胞突变一定来自同一个亚克隆,并允许亚克隆之间共享重叠突变。我们认为这更接近系统发育克隆扩增的基础理论,因为发生在父代亚克隆中的体细胞突变应该在父代和子代亚克隆之间共享。贝叶斯推断产生肿瘤样本中亚克隆数量、基因型和比例的后验概率,从而为每个亚克隆提供点估计以及估计的变异性。我们报告了模拟数据和真实数据的结果。BayClone可在http://health.bsd.uchicago.edu/yji/soft.html获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验