Department of Translational Genomics, Center for Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, Cologne, Germany.
Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
Nat Protoc. 2018 Jun;13(6):1488-1501. doi: 10.1038/nprot.2018.033. Epub 2018 May 24.
The genomes of cancer cells constantly change during pathogenesis. This evolutionary process can lead to the emergence of drug-resistant mutations in subclonal populations, which can hinder therapeutic intervention in patients. Data derived from massively parallel sequencing can be used to infer these subclonal populations using tumor-specific point mutations. The accurate determination of copy-number changes and tumor impurity is necessary to reliably infer subclonal populations by mutational clustering. This protocol describes how to use Sclust, a copy-number analysis method with a recently developed mutational clustering approach. In a series of simulations and comparisons with alternative methods, we have previously shown that Sclust accurately determines copy-number states and subclonal populations. Performance tests show that the method is computationally efficient, with copy-number analysis and mutational clustering taking <10 min. Sclust is designed such that even non-experts in computational biology or bioinformatics with basic knowledge of the Linux/Unix command-line syntax should be able to carry out analyses of subclonal populations.
癌细胞的基因组在发病过程中不断发生变化。这个进化过程可能导致亚克隆群体中出现耐药性突变,从而阻碍对患者的治疗干预。来自大规模平行测序的数据可用于通过肿瘤特异性点突变推断这些亚克隆群体。通过突变聚类准确确定拷贝数变化和肿瘤杂质对于可靠地推断亚克隆群体是必要的。本方案描述了如何使用 Sclust,这是一种带有最近开发的突变聚类方法的拷贝数分析方法。在一系列模拟和与替代方法的比较中,我们之前已经表明,Sclust 可以准确地确定拷贝数状态和亚克隆群体。性能测试表明,该方法在计算上是高效的,拷贝数分析和突变聚类的时间都<10 分钟。Sclust 的设计使得即使是没有计算生物学或生物信息学经验的非专业人员,只要具备 Linux/Unix 命令行语法的基本知识,也应该能够进行亚克隆群体的分析。