Suppr超能文献

肿瘤内突变和拷贝数变异的异质性的贝叶斯推断

Bayesian inference for intratumour heterogeneity in mutations and copy number variation.

作者信息

Lee Juhee, Müller Peter, Sengupta Subhajit, Gulukota Kamalakar, Ji Yuan

机构信息

Department of Applied Mathematics and Statistics, University of California Santa Cruz.

Department of Mathematics, University of Texas Austin.

出版信息

J R Stat Soc Ser C Appl Stat. 2016 Aug;65(4):547-563. doi: 10.1111/rssc.12136. Epub 2016 Jan 12.

Abstract

Tumor samples are heterogeneous. They consist of different subclones that are characterized by differences in DNA nucleotide sequences and copy numbers on multiple loci. Heterogeneity can be measured through the identification of the subclonal copy number and sequence at a selected set of loci. Understanding that the accurate identification of variant allele fractions greatly depends on a precise determination of copy numbers, we develop a Bayesian feature allocation model for jointly calling subclonal copy numbers and the corresponding allele sequences for the same loci. The proposed method utilizes three random matrices, , and to represent subclonal copy numbers ( ), numbers of subclonal variant alleles ( ) and cellular fractions of subclones in samples ( ), respectively. The unknown number of subclones implies a random number of columns for these matrices. We use next-generation sequencing data to estimate the subclonal structures through inference on these three matrices. Using simulation studies and a real data analysis, we demonstrate how posterior inference on the subclonal structure is enhanced with the joint modeling of both structure and sequencing variants on subclonal genomes. Software is available at http://compgenome.org/BayClone2.

摘要

肿瘤样本具有异质性。它们由不同的亚克隆组成,这些亚克隆的特征是多个位点的DNA核苷酸序列和拷贝数存在差异。异质性可以通过识别一组选定位点的亚克隆拷贝数和序列来衡量。由于认识到变异等位基因分数的准确识别很大程度上依赖于拷贝数的精确测定,我们开发了一种贝叶斯特征分配模型,用于联合调用同一基因座的亚克隆拷贝数和相应的等位基因序列。所提出的方法利用三个随机矩阵 、 和 分别表示亚克隆拷贝数( )、亚克隆变异等位基因数( )和样本中亚克隆的细胞分数( )。亚克隆数量未知意味着这些矩阵的列数是随机的。我们使用下一代测序数据通过对这三个矩阵的推断来估计亚克隆结构。通过模拟研究和实际数据分析,我们展示了如何通过对亚克隆基因组上的结构和测序变异进行联合建模来增强对亚克隆结构的后验推断。软件可在http://compgenome.org/BayClone2获取。

相似文献

1
Bayesian inference for intratumour heterogeneity in mutations and copy number variation.
J R Stat Soc Ser C Appl Stat. 2016 Aug;65(4):547-563. doi: 10.1111/rssc.12136. Epub 2016 Jan 12.
3
SeqClone: sequential Monte Carlo based inference of tumor subclones.
BMC Bioinformatics. 2019 Jan 5;20(1):6. doi: 10.1186/s12859-018-2562-y.
5
Decomposing the subclonal structure of tumors with two-way mixture models on copy number aberrations.
PLoS One. 2018 Dec 12;13(12):e0206579. doi: 10.1371/journal.pone.0206579. eCollection 2018.
7
Characterizing Intra-Tumor Heterogeneity From Somatic Mutations Without Copy-Neutral Assumption.
IEEE/ACM Trans Comput Biol Bioinform. 2021 Nov-Dec;18(6):2271-2280. doi: 10.1109/TCBB.2020.2973635. Epub 2021 Dec 8.
9
MAD Bayes for Tumor Heterogeneity - Feature Allocation with Exponential Family Sampling.
J Am Stat Assoc. 2015 Mar 1;110(510):503-514. doi: 10.1080/01621459.2014.995794.

引用本文的文献

1
Flexible Regularized Estimation in High-Dimensional Mixed Membership Models.
Comput Stat Data Anal. 2024 Jun;194. doi: 10.1016/j.csda.2024.107931. Epub 2024 Feb 9.
2
A Bayesian feature allocation model for identifying cell subpopulations using CyTOF data.
J R Stat Soc Ser C Appl Stat. 2023 Apr 25;72(3):718-738. doi: 10.1093/jrsssc/qlad029. eCollection 2023 Jun.
3
Adaptive Enrichment Designs in Clinical Trials.
Annu Rev Stat Appl. 2021 Mar;8(1):393-411. doi: 10.1146/annurev-statistics-040720-032818.
5
Algorithmic approaches to clonal reconstruction in heterogeneous cell populations.
Quant Biol. 2019 Dec;7(4):255-265. doi: 10.1007/s40484-019-0188-3. Epub 2019 Dec 7.
6
Joint analysis of single-cell and bulk tissue sequencing data to infer intratumor heterogeneity.
Biometrics. 2020 Sep;76(3):983-994. doi: 10.1111/biom.13198. Epub 2019 Dec 27.
7
Enter the Matrix: Factorization Uncovers Knowledge from Omics.
Trends Genet. 2018 Oct;34(10):790-805. doi: 10.1016/j.tig.2018.07.003. Epub 2018 Aug 22.

本文引用的文献

2
A general framework for analyzing tumor subclonality using SNP array and DNA sequencing data.
Genome Biol. 2014 Sep 25;15(9):473. doi: 10.1186/s13059-014-0473-4.
3
SciClone: inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution.
PLoS Comput Biol. 2014 Aug 7;10(8):e1003665. doi: 10.1371/journal.pcbi.1003665. eCollection 2014 Aug.
4
Inferring clonal composition from multiple sections of a breast cancer.
PLoS Comput Biol. 2014 Jul 10;10(7):e1003703. doi: 10.1371/journal.pcbi.1003703. eCollection 2014 Jul.
5
PyClone: statistical inference of clonal population structure in cancer.
Nat Methods. 2014 Apr;11(4):396-8. doi: 10.1038/nmeth.2883. Epub 2014 Mar 16.
6
Inferring clonal evolution of tumors from single nucleotide somatic mutations.
BMC Bioinformatics. 2014 Feb 1;15:35. doi: 10.1186/1471-2105-15-35.
7
Tumour heterogeneity in the clinic.
Nature. 2013 Sep 19;501(7467):355-64. doi: 10.1038/nature12627.
8
THetA: inferring intra-tumor heterogeneity from high-throughput DNA sequencing data.
Genome Biol. 2013 Jul 29;14(7):R80. doi: 10.1186/gb-2013-14-7-r80.
9
TrAp: a tree approach for fingerprinting subclonal tumor composition.
Nucleic Acids Res. 2013 Sep;41(17):e165. doi: 10.1093/nar/gkt641. Epub 2013 Jul 27.
10
A genomic view of mosaicism and human disease.
Nat Rev Genet. 2013 May;14(5):307-20. doi: 10.1038/nrg3424.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验