Taber David J, Palanisamy Arun P, Srinivas Titte R, Gebregziabher Mulugeta, Odeghe John, Chavin Kenneth D, Egede Leonard E, Baliga Prabhakar K
1 Medical University of South Carolina, Division of Transplant Surgery, Charleston, SC. 2 Ralph H Johnson VAMC, Department of Pharmacy, Charleston, SC. 3 Medical University of South Carolina, Division of Transplant Nephrology, Charleston, SC. 4 Medical University of South Carolina, Department of Public Health Sciences, Charleston, SC. 5 Medical University of South Carolina, College of Medicine. 6 Medical University of South Carolina, Center for Health Disparities Research, Charleston, SC. 7 Ralph H Johnson VAMC, Center of Innovation (COIN), Charleston, SC.
Transplantation. 2015 Feb;99(2):324-30. doi: 10.1097/TP.0000000000000565.
Thirty-day readmissions (30DRA) are a highly scrutinized measure of healthcare quality and relatively frequent among kidney transplants (KTX). Development of predictive risk models is critical to reducing 30DRA and improving outcomes. Current approaches rely on fixed variables derived from administrative data. These models may not capture clinical evolution that is critical to predicting outcomes.
We directed a retrospective analysis toward: (1) developing parsimonious risk models for 30DRA and (2) comparing efficiency of models based on the use of immutable versus dynamic data. Baseline and in-hospital clinical and outcomes data were collected from adult KTX recipients between 2005 and 2012. Risk models were developed using backward logistic regression and compared for predictive efficacy using receiver operating characteristic curves.
Of 1147 KTX patients, 123 had 30DRA. Risk factors for 30DRA included recipient comorbidities, transplant factors, and index hospitalization patient level clinical data. The initial fixed variable model included 9 risk factors and was modestly predictive (area under the curve, 0.64; 95% confidence interval [95% CI], 0.58-0.69). The model was parsimoniously reduced to 6 risks, which remained modestly predictive (area under the curve, 0.63; 95% CI, 0.58-0.69). The initial predictive model using 13 fixed and dynamic variables was significantly predictive (AUC, 0.73; 95% CI, 0.67-0.80), with parsimonious reduction to 9 variables maintaining predictive efficacy (AUC, 0.73; 95% CI, 0.67-0.79). The final model using dynamically evolving clinical data outperformed the model using static variables (P=0.009). Internal validation demonstrated that the final model was stable with minimal bias.
We demonstrate that modeling dynamic clinical data outperformed models using immutable data in predicting 30DRA.
30天再入院率(30DRA)是医疗质量中一项受到高度审视的指标,在肾移植(KTX)中相对常见。开发预测风险模型对于降低30DRA及改善治疗结果至关重要。当前的方法依赖于从行政数据中得出的固定变量。这些模型可能无法捕捉到对于预测结果至关重要的临床演变情况。
我们进行了一项回顾性分析,旨在:(1)开发针对30DRA的简洁风险模型,以及(2)基于使用不变数据与动态数据比较模型的效率。收集了2005年至2012年间成年KTX受者的基线及住院期间临床和治疗结果数据。使用向后逻辑回归开发风险模型,并使用受试者工作特征曲线比较预测效能。
在1147例KTX患者中,123例出现了30DRA。30DRA的风险因素包括受者合并症、移植因素以及首次住院时患者层面的临床数据。最初的固定变量模型包含9个风险因素,预测能力一般(曲线下面积,0.64;95%置信区间[95%CI],0.58 - 0.69)。该模型精简至6个风险因素后,预测能力依然一般(曲线下面积,0.63;95%CI,0.58 - 0.69)。最初使用13个固定和动态变量的预测模型具有显著的预测能力(AUC,0.73;95%CI,0.67 - 0.80),精简至9个变量后仍保持预测效能(AUC,0.73;95%CI,0.67 - 0.79)。使用动态演变临床数据的最终模型优于使用静态变量的模型(P = 0.009)。内部验证表明最终模型稳定且偏差极小。
我们证明,在预测30DRA方面,对动态临床数据进行建模比使用不变数据的模型表现更优。