Suppr超能文献

纳入动态临床数据可提高肾移植30天再入院风险模型的预测性能。

Inclusion of dynamic clinical data improves the predictive performance of a 30-day readmission risk model in kidney transplantation.

作者信息

Taber David J, Palanisamy Arun P, Srinivas Titte R, Gebregziabher Mulugeta, Odeghe John, Chavin Kenneth D, Egede Leonard E, Baliga Prabhakar K

机构信息

1 Medical University of South Carolina, Division of Transplant Surgery, Charleston, SC. 2 Ralph H Johnson VAMC, Department of Pharmacy, Charleston, SC. 3 Medical University of South Carolina, Division of Transplant Nephrology, Charleston, SC. 4 Medical University of South Carolina, Department of Public Health Sciences, Charleston, SC. 5 Medical University of South Carolina, College of Medicine. 6 Medical University of South Carolina, Center for Health Disparities Research, Charleston, SC. 7 Ralph H Johnson VAMC, Center of Innovation (COIN), Charleston, SC.

出版信息

Transplantation. 2015 Feb;99(2):324-30. doi: 10.1097/TP.0000000000000565.

Abstract

BACKGROUND

Thirty-day readmissions (30DRA) are a highly scrutinized measure of healthcare quality and relatively frequent among kidney transplants (KTX). Development of predictive risk models is critical to reducing 30DRA and improving outcomes. Current approaches rely on fixed variables derived from administrative data. These models may not capture clinical evolution that is critical to predicting outcomes.

METHODS

We directed a retrospective analysis toward: (1) developing parsimonious risk models for 30DRA and (2) comparing efficiency of models based on the use of immutable versus dynamic data. Baseline and in-hospital clinical and outcomes data were collected from adult KTX recipients between 2005 and 2012. Risk models were developed using backward logistic regression and compared for predictive efficacy using receiver operating characteristic curves.

RESULTS

Of 1147 KTX patients, 123 had 30DRA. Risk factors for 30DRA included recipient comorbidities, transplant factors, and index hospitalization patient level clinical data. The initial fixed variable model included 9 risk factors and was modestly predictive (area under the curve, 0.64; 95% confidence interval [95% CI], 0.58-0.69). The model was parsimoniously reduced to 6 risks, which remained modestly predictive (area under the curve, 0.63; 95% CI, 0.58-0.69). The initial predictive model using 13 fixed and dynamic variables was significantly predictive (AUC, 0.73; 95% CI, 0.67-0.80), with parsimonious reduction to 9 variables maintaining predictive efficacy (AUC, 0.73; 95% CI, 0.67-0.79). The final model using dynamically evolving clinical data outperformed the model using static variables (P=0.009). Internal validation demonstrated that the final model was stable with minimal bias.

CONCLUSIONS

We demonstrate that modeling dynamic clinical data outperformed models using immutable data in predicting 30DRA.

摘要

背景

30天再入院率(30DRA)是医疗质量中一项受到高度审视的指标,在肾移植(KTX)中相对常见。开发预测风险模型对于降低30DRA及改善治疗结果至关重要。当前的方法依赖于从行政数据中得出的固定变量。这些模型可能无法捕捉到对于预测结果至关重要的临床演变情况。

方法

我们进行了一项回顾性分析,旨在:(1)开发针对30DRA的简洁风险模型,以及(2)基于使用不变数据与动态数据比较模型的效率。收集了2005年至2012年间成年KTX受者的基线及住院期间临床和治疗结果数据。使用向后逻辑回归开发风险模型,并使用受试者工作特征曲线比较预测效能。

结果

在1147例KTX患者中,123例出现了30DRA。30DRA的风险因素包括受者合并症、移植因素以及首次住院时患者层面的临床数据。最初的固定变量模型包含9个风险因素,预测能力一般(曲线下面积,0.64;95%置信区间[95%CI],0.58 - 0.69)。该模型精简至6个风险因素后,预测能力依然一般(曲线下面积,0.63;95%CI,0.58 - 0.69)。最初使用13个固定和动态变量的预测模型具有显著的预测能力(AUC,0.73;95%CI,0.67 - 0.80),精简至9个变量后仍保持预测效能(AUC,0.73;95%CI,0.67 - 0.79)。使用动态演变临床数据的最终模型优于使用静态变量的模型(P = 0.009)。内部验证表明最终模型稳定且偏差极小。

结论

我们证明,在预测30DRA方面,对动态临床数据进行建模比使用不变数据的模型表现更优。

相似文献

4
5
Risk score for unplanned vascular readmissions.
J Vasc Surg. 2014 May;59(5):1340-7.e1. doi: 10.1016/j.jvs.2013.11.089. Epub 2014 Jan 18.
6
Readmissions after complex aneurysm repair are frequent, costly, and primarily at nonindex hospitals.
J Vasc Surg. 2014 Dec;60(6):1429-37. doi: 10.1016/j.jvs.2014.08.092. Epub 2014 Oct 12.
8
Predicting three-year kidney graft survival in recipients with systemic lupus erythematosus.
ASAIO J. 2011 Jul-Aug;57(4):300-9. doi: 10.1097/MAT.0b013e318222db30.
9
Risk prediction model for respiratory complications after lung resection: An observational multicentre study.
Eur J Anaesthesiol. 2016 May;33(5):326-33. doi: 10.1097/EJA.0000000000000354.
10
A Novel Risk Calculator Predicts 90-Day Readmission Following Total Joint Arthroplasty.
J Bone Joint Surg Am. 2019 Mar 20;101(6):547-556. doi: 10.2106/JBJS.18.00843.

引用本文的文献

1
Decoding Immuno-Competence: A Novel Analysis of Complete Blood Cell Count Data in COVID-19 Outcomes.
Biomedicines. 2024 Apr 15;12(4):871. doi: 10.3390/biomedicines12040871.
3
Predicting Kidney Transplant Recipient Cohorts' 30-Day Rehospitalization Using Clinical Notes and Electronic Health Care Record Data.
Kidney Int Rep. 2022 Dec 12;8(3):489-498. doi: 10.1016/j.ekir.2022.12.006. eCollection 2023 Mar.
4
Leveraging Advanced Data Analytics to Predict the Risk of All-Cause Seven-Day Emergency Readmissions.
Cureus. 2022 Aug 3;14(8):e27630. doi: 10.7759/cureus.27630. eCollection 2022 Aug.
5
6
Risk Factors and Outcomes of Early Hospital Readmission in Canadian Kidney Transplant Recipients: A Population-Based Multi-Center Cohort Study.
Can J Kidney Health Dis. 2021 Nov 29;8:20543581211060926. doi: 10.1177/20543581211060926. eCollection 2021.
7
Published models that predict hospital readmission: a critical appraisal.
BMJ Open. 2021 Aug 3;11(8):e044964. doi: 10.1136/bmjopen-2020-044964.
10
Assessing Predictors of Early and Late Hospital Readmission After Kidney Transplantation.
Transplant Direct. 2019 Jul 29;5(8):e479. doi: 10.1097/TXD.0000000000000918. eCollection 2019 Aug.

本文引用的文献

1
Progress and challenges: implementation and use of health information technology among critical-access hospitals.
Health Aff (Millwood). 2014 Jul;33(7):1262-70. doi: 10.1377/hlthaff.2014.0279.
2
Leveraging the big-data revolution: CMS is expanding capabilities to spur health system transformation.
Health Aff (Millwood). 2014 Jul;33(7):1195-202. doi: 10.1377/hlthaff.2014.0130.
3
Implementing electronic health care predictive analytics: considerations and challenges.
Health Aff (Millwood). 2014 Jul;33(7):1148-54. doi: 10.1377/hlthaff.2014.0352.
4
Big data in health care: using analytics to identify and manage high-risk and high-cost patients.
Health Aff (Millwood). 2014 Jul;33(7):1123-31. doi: 10.1377/hlthaff.2014.0041.
5
Big data in health: a new era for research and patient care.
Health Aff (Millwood). 2014 Jul;33(7):1110. doi: 10.1377/hlthaff.2014.0689.
6
Sequelae of early hospital readmission after kidney transplantation.
Am J Transplant. 2014 Feb;14(2):397-403. doi: 10.1111/ajt.12563. Epub 2014 Jan 21.
7
Early rehospitalization after kidney transplantation: assessing preventability and prognosis.
Am J Transplant. 2013 Dec;13(12):3164-72. doi: 10.1111/ajt.12513. Epub 2013 Oct 28.
8
Reducing hospital readmission rates: current strategies and future directions.
Annu Rev Med. 2014;65:471-85. doi: 10.1146/annurev-med-022613-090415. Epub 2013 Oct 21.
9
Frailty and early hospital readmission after kidney transplantation.
Am J Transplant. 2013 Aug;13(8):2091-5. doi: 10.1111/ajt.12300. Epub 2013 Jun 3.
10
Scientific Registry of Transplant Recipients: collecting, analyzing, and reporting data on transplantation in the United States.
Transplant Rev (Orlando). 2013 Apr;27(2):50-6. doi: 10.1016/j.trre.2013.01.002. Epub 2013 Mar 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验