Suppr超能文献

电子病历在医院再入院风险预测模型的开发和验证中的应用:系统评价。

Use of electronic medical records in development and validation of risk prediction models of hospital readmission: systematic review.

机构信息

Department of Family Medicine, University of Michigan Medical School, Ann Arbor, MI, USA

Institute for Healthcare Policy and Innovation, University of Michigan Medical School, Ann Arbor, MI, USA.

出版信息

BMJ. 2020 Apr 8;369:m958. doi: 10.1136/bmj.m958.

Abstract

OBJECTIVE

To provide focused evaluation of predictive modeling of electronic medical record (EMR) data to predict 30 day hospital readmission.

DESIGN

Systematic review.

DATA SOURCE

Ovid Medline, Ovid Embase, CINAHL, Web of Science, and Scopus from January 2015 to January 2019.

ELIGIBILITY CRITERIA FOR SELECTING STUDIES

All studies of predictive models for 28 day or 30 day hospital readmission that used EMR data.

OUTCOME MEASURES

Characteristics of included studies, methods of prediction, predictive features, and performance of predictive models.

RESULTS

Of 4442 citations reviewed, 41 studies met the inclusion criteria. Seventeen models predicted risk of readmission for all patients and 24 developed predictions for patient specific populations, with 13 of those being developed for patients with heart conditions. Except for two studies from the UK and Israel, all were from the US. The total sample size for each model ranged between 349 and 1 195 640. Twenty five models used a split sample validation technique. Seventeen of 41 studies reported C statistics of 0.75 or greater. Fifteen models used calibration techniques to further refine the model. Using EMR data enabled final predictive models to use a wide variety of clinical measures such as laboratory results and vital signs; however, use of socioeconomic features or functional status was rare. Using natural language processing, three models were able to extract relevant psychosocial features, which substantially improved their predictions. Twenty six studies used logistic or Cox regression models, and the rest used machine learning methods. No statistically significant difference (difference 0.03, 95% confidence interval -0.0 to 0.07) was found between average C statistics of models developed using regression methods (0.71, 0.68 to 0.73) and machine learning (0.74, 0.71 to 0.77).

CONCLUSIONS

On average, prediction models using EMR data have better predictive performance than those using administrative data. However, this improvement remains modest. Most of the studies examined lacked inclusion of socioeconomic features, failed to calibrate the models, neglected to conduct rigorous diagnostic testing, and did not discuss clinical impact.

摘要

目的

对电子病历(EMR)数据预测 30 天住院再入院的预测模型进行重点评估。

设计

系统评价。

资料来源

2015 年 1 月至 2019 年 1 月,Ovid Medline、Ovid Embase、CINAHL、Web of Science 和 Scopus。

选择研究的资格标准

所有使用 EMR 数据预测 28 天或 30 天住院再入院风险的预测模型研究。

结局测量

纳入研究的特征、预测方法、预测特征和预测模型的性能。

结果

在审查的 4442 条引文中有 41 项研究符合纳入标准。17 项模型预测了所有患者的再入院风险,24 项模型为特定患者人群制定了预测,其中 13 项是为心脏病患者制定的。除了来自英国和以色列的两项研究外,其余均来自美国。每个模型的总样本量在 349 到 1195640 之间。25 项模型使用了拆分样本验证技术。41 项研究中有 17 项报告了 C 统计量为 0.75 或更高。15 项模型使用校准技术进一步优化了模型。使用 EMR 数据使最终预测模型能够使用各种临床指标,如实验室结果和生命体征;然而,很少使用社会经济特征或功能状态。使用自然语言处理,三个模型能够提取相关的社会心理特征,从而显著提高了它们的预测能力。26 项研究使用了逻辑回归或 Cox 回归模型,其余研究使用了机器学习方法。使用回归方法(0.71,0.68 至 0.73)和机器学习方法(0.74,0.71 至 0.77)开发的模型的平均 C 统计量之间没有统计学意义上的显著差异(差异为 0.03,95%置信区间为-0.0 至 0.07)。

结论

平均而言,使用 EMR 数据的预测模型比使用管理数据的预测模型具有更好的预测性能。然而,这种改进仍然很小。大多数研究都缺乏社会经济特征的纳入,未能对模型进行校准,忽略了严格的诊断测试,也没有讨论临床影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d423/7249246/3e89a57ca52d/mahe049480.f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验