Suppr超能文献

多模态任意视角椎体识别的三维可变形层次模型

Multi-Modality Vertebra Recognition in Arbitrary Views Using 3D Deformable Hierarchical Model.

出版信息

IEEE Trans Med Imaging. 2015 Aug;34(8):1676-93. doi: 10.1109/TMI.2015.2392054. Epub 2015 Jan 14.

Abstract

Computer-aided diagnosis of spine problems relies on the automatic identification of spine structures in images. The task of automatic vertebra recognition is to identify the global spine and local vertebra structural information such as spine shape, vertebra location and pose. Vertebra recognition is challenging due to the large appearance variations in different image modalities/views and the high geometric distortions in spine shape. Existing vertebra recognitions are usually simplified as vertebrae detections, which mainly focuses on the identification of vertebra locations and labels but cannot support further spine quantitative assessment. In this paper, we propose a vertebra recognition method using 3D deformable hierarchical model (DHM) to achieve cross-modality local vertebra location+pose identification with accurate vertebra labeling, and global 3D spine shape recovery. We recast vertebra recognition as deformable model matching, fitting the input spine images with the 3D DHM via deformations. The 3D model-matching mechanism provides a more comprehensive vertebra location+pose+label simultaneous identification than traditional vertebra location+label detection, and also provides an articulated 3D mesh model for the input spine section. Moreover, DHM can conduct versatile recognition on volume and multi-slice data, even on single slice. Experiments show our method can successfully extract vertebra locations, labels, and poses from multi-slice T1/T2 MR and volume CT, and can reconstruct 3D spine model on different image views such as lumbar, cervical, even whole spine. The resulting vertebra information and the recovered shape can be used for quantitative diagnosis of spine problems and can be easily digitalized and integrated in modern medical PACS systems.

摘要

计算机辅助诊断脊柱问题依赖于图像中脊柱结构的自动识别。自动椎体识别的任务是识别全局脊柱和局部椎体结构信息,如脊柱形状、椎体位置和姿势。由于不同图像模态/视图中的外观变化较大,以及脊柱形状的高度几何变形,椎体识别具有挑战性。现有的椎体识别通常被简化为椎体检测,主要侧重于椎体位置和标签的识别,但不能支持进一步的脊柱定量评估。在本文中,我们提出了一种使用三维可变形层次模型(DHM)的椎体识别方法,以实现跨模态局部椎体位置+姿势识别,具有准确的椎体标记,并恢复全局 3D 脊柱形状。我们将椎体识别重新定义为可变形模型匹配,通过变形将输入脊柱图像与 3D DHM 进行匹配。3D 模型匹配机制提供了比传统椎体位置+标签检测更全面的椎体位置+姿势+标签同时识别,并且还为输入脊柱部分提供了一个铰接的 3D 网格模型。此外,DHM 可以对体积和多切片数据进行多种识别,甚至可以对单切片进行识别。实验表明,我们的方法可以成功地从多切片 T1/T2MR 和体积 CT 中提取椎体位置、标签和姿势,并可以在不同的图像视图(如腰椎、颈椎,甚至整个脊柱)上重建 3D 脊柱模型。所得的椎体信息和恢复的形状可用于脊柱问题的定量诊断,并且可以很容易地数字化并集成到现代医学 PACS 系统中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验