Suppr超能文献

通过数字图像分析自动识别外周血中的非典型淋巴细胞。

Automatic recognition of atypical lymphoid cells from peripheral blood by digital image analysis.

作者信息

Alférez Santiago, Merino Anna, Bigorra Laura, Mujica Luis, Ruiz Magda, Rodellar Jose

机构信息

From the Universitat Politècnica de Catalunya, Barcelona, Spain, and.

Department of Hemotherapy-Hemostasis, Hospital Clinic, Barcelona, Spain.

出版信息

Am J Clin Pathol. 2015 Feb;143(2):168-76; quiz 305. doi: 10.1309/AJCP78IFSTOGZZJN.

Abstract

OBJECTIVES

The objective was the development of a method for the automatic recognition of different types of atypical lymphoid cells.

METHODS

In the method development, a training set (TS) of 1,500 lymphoid cell images from peripheral blood was used. To segment the images, we used clustering of color components and watershed transformation. In total, 113 features were extracted for lymphocyte recognition by linear discriminant analysis (LDA) with a 10-fold cross-validation over the TS. Then, a new validation set (VS) of 150 images was used, performing two steps: (1) tuning the LDA classifier using the TS and (2) classifying the VS in the different lymphoid cell types.

RESULTS

The segmentation algorithm was very effective in separating the cytoplasm, nucleus, and peripheral zone around the cell. From them, descriptive features were extracted and used to recognize the different lymphoid cells. The accuracy for the classification in the TS was 98.07%. The precision, sensitivity, and specificity values were above 99.7%, 97.5%, and 98.6%, respectively. The accuracy of the classification in the VS was 85.33%.

CONCLUSIONS

The method reaches a high precision in the recognition of five different types of lymphoid cells and could allow for the design of a diagnosis support tool in the future.

摘要

目的

目标是开发一种自动识别不同类型非典型淋巴细胞的方法。

方法

在方法开发过程中,使用了来自外周血的1500张淋巴细胞图像的训练集(TS)。为了分割图像,我们使用了颜色分量聚类和分水岭变换。通过线性判别分析(LDA)对TS进行10折交叉验证,总共提取了113个特征用于淋巴细胞识别。然后,使用150张图像的新验证集(VS),分两步进行:(1)使用TS调整LDA分类器;(2)将VS分类为不同的淋巴细胞类型。

结果

分割算法在分离细胞质、细胞核和细胞周围外周区域方面非常有效。从这些区域中提取描述性特征并用于识别不同的淋巴细胞。TS中分类的准确率为98.07%。精确率、灵敏度和特异性值分别高于99.7%、97.5%和98.6%。VS中分类的准确率为85.33%。

结论

该方法在识别五种不同类型淋巴细胞方面达到了高精度,未来有望设计出诊断支持工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验