Liu Xian-jie, Zhu Wei-cong, Su Yu-bin, Guo Chang, Zeng Zhao-hai, Zhu Hai, Li Hui, Peng Xuan-xian
Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China.
Shenzhen Bioeasy Biotechnologies Co., Ltd. No. 11 R&D Centre, Bao'an District, Shenzhen 518100, China.
J Proteomics. 2015 Feb 26;116:97-105. doi: 10.1016/j.jprot.2014.12.018. Epub 2015 Jan 14.
Antibiotic-resistant Edwardsiella tarda poses a severe challenge to aquaculture. An understanding for antibiotic-resistant mechanisms is crucial to control the disease. The present study characterizes E. tarda ampicillin-stressed proteome and shows the importance of energy metabolism including the TCA cycle and glycolysis/gluconeogenesis in the antibiotic resistance. Further combination with antibiotic measurement develops a new method for identification of antibiotic-binding proteins out of differential abundances of proteins and results in determination of ETAE_0175 and ETAE_3367 as ampicillin-binding proteins in E. tarda. Genes of the two proteins are cloned and recombinant proteins are purified for validation of antibiotic-binding capability. Results show that higher binding capability is detected in ETAE_3367 than ETAE_0175. Out of the two proteins, ETAE_3367 is first reported here to be an antibiotic-binding protein, while ETAE_0175 homology in other bacteria has been shown to bind with other antibiotics. Bioinformatics analysis shows that ETAE_3367 may closely interact with aceF and sucA belonging to the TCA cycle and glycolysis/gluconeogenesis, respectively. These results indicate that energy metabolism contributes to ampicillin resistance in E. tarda and a new method to identify antibiotic-binding proteins is developed. These findings highlight the way to an understanding of antibiotic-resistant mechanisms in content of antibiotic-binding proteins.
Our data characterizes Edwardsiella tarda ampicillin-stressed proteome and shows the importance of energy metabolism including the TCA cycle and glycolysis/gluconeogenesis in the antibiotic resistance. Furthermore, a new method based 2-DE proteomics is developed for identification of antibiotic-binding proteins, which results in determination of ETAE_0175 and ETAE_3367 as ampicillin-binding proteins in E. tarda. ETAE_3367 is closely interacted with proteins of the TCA cycle and glycolysis/gluconeogenesis, suggesting the drug-resistant mechanism.
耐抗生素迟缓爱德华氏菌对水产养殖构成严峻挑战。了解抗生素耐药机制对于控制该疾病至关重要。本研究对迟缓爱德华氏菌氨苄青霉素应激蛋白质组进行了表征,并显示了包括三羧酸循环和糖酵解/糖异生在内的能量代谢在抗生素耐药性中的重要性。进一步结合抗生素测量,从差异丰度蛋白质中开发出一种鉴定抗生素结合蛋白的新方法,并确定ETAE_0175和ETAE_3367为迟缓爱德华氏菌中的氨苄青霉素结合蛋白。克隆了这两种蛋白质的基因并纯化了重组蛋白,以验证抗生素结合能力。结果表明,ETAE_3367的结合能力高于ETAE_0175。在这两种蛋白质中,ETAE_3367首次被报道为抗生素结合蛋白,而ETAE_0175与其他细菌的同源性已显示与其他抗生素结合。生物信息学分析表明,ETAE_3367可能分别与属于三羧酸循环和糖酵解/糖异生的aceF和sucA密切相互作用。这些结果表明,能量代谢有助于迟缓爱德华氏菌对氨苄青霉素的耐药性,并开发了一种鉴定抗生素结合蛋白的新方法。这些发现突出了在抗生素结合蛋白的背景下理解抗生素耐药机制的途径。
我们的数据表征了迟缓爱德华氏菌氨苄青霉素应激蛋白质组,并显示了包括三羧酸循环和糖酵解/糖异生在内的能量代谢在抗生素耐药性中的重要性。此外,基于二维电泳蛋白质组学开发了一种鉴定抗生素结合蛋白的新方法,该方法确定ETAE_0175和ETAE_3367为迟缓爱德华氏菌中的氨苄青霉素结合蛋白。ETAE_3367与三羧酸循环和糖酵解/糖异生的蛋白质密切相互作用,提示了耐药机制。