CIRB, Collège de France, and CNRS-UMR7241 and INSERM-U1050, Equipe labellisée Ligue contre le Cancer, Paris F-75005, France.
Université Evry Val d'Essonne, LAMBE, Boulevard F Mitterrand, Evry 91025, France.
Nat Commun. 2015 Jan 19;6:6027. doi: 10.1038/ncomms7027.
Cell mechanics control the outcome of cell division. In mitosis, external forces applied on a stiff cortex direct spindle orientation and morphogenesis. During oocyte meiosis on the contrary, spindle positioning depends on cortex softening. How changes in cortical organization induce cortex softening has not yet been addressed. Furthermore, the range of tension that allows spindle migration remains unknown. Here, using artificial manipulation of mouse oocyte cortex as well as theoretical modelling, we show that cortical tension has to be tightly regulated to allow off-center spindle positioning: a too low or too high cortical tension both lead to unsuccessful spindle migration. We demonstrate that the decrease in cortical tension required for spindle positioning is fine-tuned by a branched F-actin network that triggers the delocalization of myosin-II from the cortex, which sheds new light on the interplay between actin network architecture and cortex tension.
细胞力学控制着细胞分裂的结果。在有丝分裂过程中,施加在刚性皮质上的外力可以指导纺锤体的方向和形态发生。相反,在卵母细胞减数分裂过程中,纺锤体的定位取决于皮质软化。但是,皮质组织的变化如何导致皮质软化,目前还没有得到解决。此外,允许纺锤体迁移的张力范围尚不清楚。在这里,我们使用人工操作小鼠卵母细胞皮质以及理论建模,表明皮质张力必须受到严格控制,以允许偏心纺锤体定位:皮质张力过低或过高都会导致纺锤体迁移失败。我们证明,为了进行纺锤体定位所需的皮质张力的降低是由分支的 F-肌动蛋白网络精细调节的,该网络触发肌球蛋白-II 从皮质的去定位,这为肌动蛋白网络结构和皮质张力之间的相互作用提供了新的见解。