Suppr超能文献

使用液相色谱-质谱联用技术对代谢谱进行化学计量学评估。

Chemometric evaluation of metabolic profiles using LC-MS.

作者信息

Farrés Mireia, Piña Benjamí, Tauler Romà

机构信息

Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.

出版信息

Metabolomics. 2015;11(1):210-224. doi: 10.1007/s11306-014-0689-z. Epub 2014 Jun 25.

Abstract

A new liquid chromatography mass spectrometry (LC-MS) metabolomics strategy coupled to chemometric evaluation, including variable and biomarker selection, has been assessed as a tool to discriminate between control and stressed yeast samples. Metabolic changes occurring during yeast culture at different temperatures (30 and 42 °C) were analysed and the complex data generated in profiling experiments were evaluated by different chemometric multivariate approaches. Multivariate curve resolution alternating least squares (MCR-ALS) was applied to full spectral scan LC-MS preprocessed data multisets arranged in augmented column-wise data matrices. The results showed that sectioning the MS-chromatograms in different windows and analysing them by MCR-ALS enabled the proper resolution of very complex coeluted chromatographic peaks. The investigation of possible relationships between MCR-ALS resolved chromatographic peak areas and culture temperature was then investigated by partial least squares discriminant analysis (PLS-DA). Selection of most relevant resolved chromatographic peaks associated to yeast culture temperature changes was achieved according to PLS-DA-Variable Importance in Projection scores. A metabolite identification workflow was developed utilizing MCR-ALS resolved pure MS spectra and high-resolution accurate mass measurements to confirm assigned structures based on entries in metabolite databases. A total of 65 metabolites were identified. A preliminary interpretation of these results indicates that the strategy described in this study can be proposed as a general tool to facilitate biomarker identification and modelling in similar untargeted metabolomic studies.

摘要

一种新的液相色谱-质谱联用(LC-MS)代谢组学策略,结合化学计量学评估,包括变量和生物标志物选择,已被评估为区分对照酵母样品和应激酵母样品的工具。分析了酵母在不同温度(30和42°C)下培养过程中发生的代谢变化,并通过不同的化学计量学多变量方法评估了在分析实验中生成的复杂数据。将多元曲线分辨交替最小二乘法(MCR-ALS)应用于按列增强排列的数据矩阵中的全光谱扫描LC-MS预处理数据多集。结果表明,将质谱色谱图分割成不同窗口并通过MCR-ALS进行分析,能够正确解析非常复杂的共洗脱色谱峰。然后通过偏最小二乘判别分析(PLS-DA)研究MCR-ALS解析的色谱峰面积与培养温度之间的可能关系。根据PLS-DA投影变量重要性得分,选择与酵母培养温度变化相关的最相关解析色谱峰。利用MCR-ALS解析的纯质谱图和高分辨率精确质量测量,开发了一种代谢物鉴定工作流程,以根据代谢物数据库中的条目确认指定的结构。共鉴定出65种代谢物。对这些结果的初步解释表明,本研究中描述的策略可作为一种通用工具,便于在类似的非靶向代谢组学研究中进行生物标志物鉴定和建模。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd6/4289532/a954e5fe202e/11306_2014_689_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验