Suppr超能文献

骨髓中的应变能密度梯度预测成骨细胞和破骨细胞活性:一项有限元研究。

Strain energy density gradients in bone marrow predict osteoblast and osteoclast activity: a finite element study.

作者信息

Webster Duncan, Schulte Friederike A, Lambers Floor M, Kuhn Gisela, Müller Ralph

机构信息

Institute for Biomechanics, ETH Zürich, Zürich, Switzerland.

Institute for Biomechanics, ETH Zürich, Zürich, Switzerland. Electronic address: http://www.biomech.ethz.ch.

出版信息

J Biomech. 2015 Mar 18;48(5):866-74. doi: 10.1016/j.jbiomech.2014.12.009. Epub 2015 Jan 2.

Abstract

Huiskes et al. hypothesized that mechanical strains sensed by osteocytes residing in trabecular bone dictate the magnitude of load-induced bone formation. More recently, the mechanical environment in bone marrow has also been implicated in bone׳s response to mechanical stimulation. In this study, we hypothesize that trabecular load-induced bone formation can be predicted by mechanical signals derived from an integrative µFE model, incorporating a description of both the bone and marrow phase. Using the mouse tail loading model in combination with in vivo micro-computed tomography (µCT) we tracked load induced changes in the sixth caudal vertebrae of C57BL/6 mice to quantify the amount of newly mineralized and eroded bone volumes. To identify the mechanical signals responsible for adaptation, local morphometric changes were compared to micro-finite element (µFE) models of vertebrae prior to loading. The mechanical parameters calculated were strain energy density (SED) on trabeculae at bone forming and resorbing surfaces, SED in the marrow at the boundary between bone forming and resorbing surfaces, along with SED in the trabecular bone and marrow volumes. The gradients of each parameter were also calculated. Simple regression analysis showed mean SED gradients in the trabecular bone matrix to significantly correlate with newly mineralized and eroded bone volumes R(2)=0.57 and 0.41, respectively, p<0.001). Nevertheless, SED gradients in the marrow were shown to be the best predictor of osteoblastic and osteoclastic activity (R(2)=0.83 and 0.60, respectively, p<0.001). These data suggest that the mechanical environment of the bone marrow plays a significant role in determining osteoblast and osteoclast activity.

摘要

惠斯克斯等人推测,位于松质骨中的骨细胞所感知的机械应变决定了负荷诱导的骨形成的大小。最近,骨髓中的机械环境也被认为与骨骼对机械刺激的反应有关。在本研究中,我们假设松质骨负荷诱导的骨形成可以通过整合的微有限元(µFE)模型得出的机械信号来预测,该模型包含了骨和骨髓相的描述。我们将小鼠尾部加载模型与体内微型计算机断层扫描(µCT)相结合,追踪C57BL/6小鼠第六尾椎中负荷诱导的变化,以量化新矿化和侵蚀的骨体积。为了确定负责适应性变化的机械信号,将局部形态测量变化与加载前椎骨的微有限元(µFE)模型进行比较。计算的力学参数包括骨形成和吸收表面小梁的应变能密度(SED)、骨形成和吸收表面边界处骨髓中的SED,以及小梁骨和骨髓体积中的SED。还计算了每个参数的梯度。简单回归分析表明,小梁骨基质中的平均SED梯度与新矿化和侵蚀的骨体积显著相关(R²分别为0.57和0.41,p<0.001)。然而,骨髓中的SED梯度被证明是成骨细胞和破骨细胞活性的最佳预测指标(R²分别为0.83和0.60,p<0.001)。这些数据表明,骨髓的机械环境在决定成骨细胞和破骨细胞活性方面起着重要作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验