Institute for Biomechanics, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093, Zürich, Switzerland.
Biomech Model Mechanobiol. 2012 Jan;11(1-2):221-30. doi: 10.1007/s10237-011-0305-3. Epub 2011 Apr 7.
In this study, we attempt to predict cortical and trabecular bone adaptation in the mouse caudal vertebrae loading model using knowledge of bone's local mechanical environment at the onset of loading. In a previous study, we demonstrated appreciable 25.9 and 11% increases in both trabecular and cortical bone volume density, respectively, when subjecting the fifth caudal vertebrae (C5) of C57BL/6 (B6) mice to an acute loading regime (amplitude of 8N, 3000 cycles, 10 Hz, 3 times a week for 4 weeks). We have also established a validated finite element (FE) model of the C5 vertebra using micro-computed tomography (micro-CT), which characterizes, in 3D, the micro-mechanical strains present in both cortical and trabecular compartments due to the applied loads. To investigate the relationship between load-induced bone adaptation and mechanical strains in-vivo and in-silico data sets were compared. Using data from the previous cross-sectional study, we divided cortical and trabecular compartments into 15 subregions and determined, for each region, a bone formation parameter ΔBV/BS (a cross-sectional measure of the bone volume added to cortical and trabecular surfaces following the described loading regime). Linear regression was then used to correlate mean regional values of ΔBV/BS with mean values of mechanical strains derived from the FE models which were similarly regionalized. The mechanical parameters investigated were strain energy density (SED), the orthogonal strains (e (x), e (y), e (z)) and the three shear strains (e (xy), e (yz), e (zx)). For cortical regions, regression analysis showed SED to correlate extremely well with ΔBV/BS (R (2) = 0.82) and e (z) (R (2) = 0.89). Furthermore, SED was found to predict expansion of the cortical shell correlating significantly with the regional percentage increases in cortical tissue volume (R (2) = 0.92), cortical marrow volume (R (2) = 0.91) and cortical thickness (R (2) = 0.56). For trabecular regions, FE parameters were found not to correlate with load-induced trabecular bone morphology. These results indicate that load-induced cortical morphology can be predicted from population data, whereas the prediction of trabecular morphology requires subject-specific micro- architecture.
在这项研究中,我们试图通过在加载开始时了解骨骼局部力学环境的知识,来预测小鼠尾骨加载模型中的皮质骨和小梁骨适应性。在之前的研究中,我们发现当对 C57BL/6(B6)小鼠的第五尾骨(C5)施加急性加载方案(幅度为 8N,3000 个循环,10Hz,每周 3 次,持续 4 周)时,分别有 25.9%和 11%的显著增加。我们还使用微计算机断层扫描(micro-CT)建立了 C5 椎骨的验证有限元(FE)模型,该模型以 3D 方式描述了由于施加的载荷而在皮质和小梁腔室中存在的微机械应变。为了研究载荷诱导的骨适应性与体内和体外的力学应变之间的关系,比较了来自以前的横截面研究的数据。使用来自先前的横截面研究的数据,我们将皮质和小梁腔室分为 15 个亚区,并确定了每个区域的骨形成参数ΔBV/BS(皮质和小梁表面添加的骨体积的横截面测量值,遵循描述的加载方案)。然后使用线性回归将平均区域ΔBV/BS 值与从 FE 模型中得出的平均机械应变值相关联,这些模型也类似地区域化。研究的力学参数是应变能密度(SED)、正交应变(e(x)、e(y)、e(z))和三个剪切应变(e(xy)、e(yz)、e(zx))。对于皮质区域,回归分析表明 SED 与ΔBV/BS(R(2)=0.82)和 e(z)(R(2)=0.89)非常相关。此外,发现 SED 可预测皮质壳的扩展,与皮质组织体积(R(2)=0.92)、皮质骨髓体积(R(2)=0.91)和皮质厚度(R(2)=0.56)的区域百分比增加显著相关。对于小梁区域,发现 FE 参数与载荷诱导的小梁骨形态无关。这些结果表明,皮质骨形态可以从人群数据中预测,而小梁骨形态的预测则需要特定于个体的微观结构。