Beckerson Penny, Reeder Brandon J, Wilson Michael T
School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, United Kingdom.
School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, United Kingdom.
FEBS Lett. 2015 Feb 13;589(4):507-12. doi: 10.1016/j.febslet.2015.01.010. Epub 2015 Jan 17.
Earlier kinetics studies on cytoglobin did not assign functional properties to specific structural forms. Here, we used defined monomeric and dimeric forms and cysteine mutants to show that an intramolecular disulfide bond (C38-C83) alters the dissociation rate constant of the intrinsic histidine (H81) (∼1000 fold), thus controlling binding of extrinsic ligands. Through time-resolved spectra we have unequivocally assigned CO binding to hexa- and penta-coordinate forms and have made direct measurement of histidine rebinding following photolysis. We present a model that describes how the cysteine redox state of the monomer controls histidine dissociation rate constants and hence extrinsic ligand binding.
早期对细胞珠蛋白的动力学研究并未将功能特性归因于特定的结构形式。在此,我们使用确定的单体和二聚体形式以及半胱氨酸突变体来表明,分子内二硫键(C38 - C83)改变了内在组氨酸(H81)的解离速率常数(约1000倍),从而控制外在配体的结合。通过时间分辨光谱,我们明确地将CO结合归因于六配位和五配位形式,并直接测量了光解后组氨酸的重新结合。我们提出了一个模型,该模型描述了单体的半胱氨酸氧化还原状态如何控制组氨酸解离速率常数,进而控制外在配体的结合。