Babajko Sylvie, de La Dure-Molla Muriel, Jedeon Katia, Berdal Ariane
Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, UMRS 1138 Paris, France ; Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Paris-Descartes Paris, France ; Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris Paris, France ; Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Paris-Diderot Paris, France.
Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, UMRS 1138 Paris, France ; Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Paris-Descartes Paris, France ; Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris Paris, France ; Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Paris-Diderot Paris, France ; Centre de Référence des Maladies Rares de la Face et de la Cavité Buccale MAFACE, Hôpital Rothschild Paris, France.
Front Physiol. 2015 Jan 5;5:510. doi: 10.3389/fphys.2014.00510. eCollection 2014.
While many effectors have been identified in enamel matrix and cells via genetic studies, physiological networks underlying their expression levels and thus the natural spectrum of enamel thickness and degree of mineralization are now just emerging. Several transcription factors are candidates for enamel gene expression regulation and thus the control of enamel quality. Some of these factors, such as MSX2, are mainly confined to the dental epithelium. MSX2 homeoprotein controls several stages of the ameloblast life cycle. This chapter introduces MSX2 and its target genes in the ameloblast and provides an overview of knowledge regarding its effects in vivo in transgenic mouse models. Currently available in vitro data on the role of MSX2 as a transcription factor and its links to other players in ameloblast gene regulation are considered. MSX2 modulations are relevant to the interplay between developmental, hormonal and environmental pathways and in vivo investigations, notably in the rodent incisor, have provided insight into dental physiology. Indeed, in vivo models are particularly promising for investigating enamel formation and MSX2 function in ameloblast cell fate. MSX2 may be central to the temporal-spatial restriction of enamel protein production by the dental epithelium and thus regulation of enamel quality (thickness and mineralization level) under physiological and pathological conditions. Studies on MSX2 show that amelogenesis is not an isolated process but is part of the more general physiology of coordinated dental-bone complex growth.
虽然通过遗传学研究已经在釉质基质和细胞中鉴定出了许多效应因子,但它们表达水平所基于的生理网络,以及由此产生的釉质厚度和矿化程度的自然范围,目前才刚刚开始显现。几种转录因子是釉质基因表达调控以及釉质质量控制的候选因子。其中一些因子,如MSX2,主要局限于牙上皮。MSX2同源蛋白控制成釉细胞生命周期的几个阶段。本章介绍了MSX2及其在成釉细胞中的靶基因,并概述了其在转基因小鼠模型中的体内作用的相关知识。考虑了目前关于MSX2作为转录因子的作用及其与成釉细胞基因调控中其他参与者的联系的体外数据。MSX2的调节与发育、激素和环境途径之间的相互作用相关,并且体内研究,特别是在啮齿动物切牙中的研究,为牙齿生理学提供了见解。事实上,体内模型对于研究釉质形成和成釉细胞命运中的MSX2功能特别有前景。MSX2可能是牙上皮对釉质蛋白产生进行时空限制的核心,从而在生理和病理条件下调节釉质质量(厚度和矿化水平)。对MSX2的研究表明,釉质形成不是一个孤立的过程,而是协调的牙-骨复合体生长的更一般生理学的一部分。