Suppr超能文献

使用单分子标记划分物种贫乏数据集:条形码间隙、单型网络和 GMYC 的研究。

Delimiting Species-Poor Data Sets using Single Molecular Markers: A Study of Barcode Gaps, Haplowebs and GMYC.

机构信息

Department of Zoology, University of Oxford, Oxford OX1 3PS, UK and.

Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK

出版信息

Syst Biol. 2015 Nov;64(6):900-8. doi: 10.1093/sysbio/syu130. Epub 2015 Jan 19.

Abstract

Most single-locus molecular approaches to species delimitation available to date have been designed and tested on data sets comprising at least tens of species, whereas the opposite case (species-poor data sets for which the hypothesis that all individuals are conspecific cannot by rejected beforehand) has rarely been the focus of such attempts. Here we compare the performance of barcode gap detection, haplowebs and generalized mixed Yule-coalescent (GMYC) models to delineate chimpanzees and bonobos using nuclear sequence markers, then apply these single-locus species delimitation methods to data sets of one, three, or six species simulated under a wide range of population sizes, speciation rates, mutation rates and sampling efforts. Our results show that barcode gap detection and GMYC models are unable to delineate species properly in data sets composed of one or two species, two situations in which haplowebs outperform them. For data sets composed of three or six species, bGMYC and haplowebs outperform the single-threshold and multiple-threshold versions of GMYC, whereas a clear barcode gap is only observed when population sizes and speciation rates are both small. The latter conditions represent a "sweet spot" for molecular taxonomy where all the single-locus approaches tested work well; however, the performance of these methods decreases strongly when population sizes and speciation rates are high, suggesting that multilocus approaches may be necessary to tackle such cases.

摘要

迄今为止,大多数用于物种划分的单基因座分子方法都是在至少包含数十个物种的数据集上设计和测试的,而相反的情况(即物种较少的数据集,不能事先拒绝所有个体都是同种的假设)很少成为此类尝试的焦点。在这里,我们比较了条码间隙检测、单倍型网络和广义混合 Yule 合并(GMYC)模型在使用核序列标记划分黑猩猩和倭黑猩猩时的性能,然后将这些单基因座物种划分方法应用于在广泛的种群大小、分化率、突变率和采样力度下模拟的一个、三个或六个物种的数据集。我们的结果表明,条码间隙检测和 GMYC 模型无法正确划分由一个或两个物种组成的数据集中的物种,而在这两种情况下,单倍型网络的表现优于它们。对于由三个或六个物种组成的数据集,bGMYC 和单倍型网络优于 GMYC 的单阈值和多阈值版本,而只有当种群大小和分化率都较小时才会出现明显的条码间隙。后一种情况代表了分子分类学的“甜蜜点”,所有测试的单基因座方法都能很好地工作;然而,当种群大小和分化率较高时,这些方法的性能会强烈下降,这表明可能需要使用多基因座方法来解决此类情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验