Suppr超能文献

用于监测西班牙巴伦西亚阿尔布费拉湖水质状况的综合卫星数据融合与挖掘

Integrated satellite data fusion and mining for monitoring lake water quality status of the Albufera de Valencia in Spain.

作者信息

Doña Carolina, Chang Ni-Bin, Caselles Vicente, Sánchez Juan M, Camacho Antonio, Delegido Jesús, Vannah Benjamin W

机构信息

Department of Earth Physics and Thermodynamics, University of Valencia, Burjassot, Valencia, Spain.

Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL, USA.

出版信息

J Environ Manage. 2015 Mar 15;151:416-26. doi: 10.1016/j.jenvman.2014.12.003. Epub 2015 Jan 17.

Abstract

Lake eutrophication is a critical issue in the interplay of water supply, environmental management, and ecosystem conservation. Integrated sensing, monitoring, and modeling for a holistic lake water quality assessment with respect to multiple constituents is in acute need. The aim of this paper is to develop an integrated algorithm for data fusion and mining of satellite remote sensing images to generate daily estimates of some water quality parameters of interest, such as chlorophyll a concentrations and water transparency, to be applied for the assessment of the hypertrophic Albufera de Valencia. The Albufera de Valencia is the largest freshwater lake in Spain, which can often present values of chlorophyll a concentration over 200 mg m(-3) and values of transparency (Secchi Disk, SD) as low as 20 cm. Remote sensing data from Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat Thematic Mapper (TM) and Enhance Thematic Mapper (ETM+) images were fused to carry out an integrative near-real time water quality assessment on a daily basis. Landsat images are useful to study the spatial variability of the water quality parameters, due to its spatial resolution of 30 m, in comparison to the low spatial resolution (250/500 m) of MODIS. While Landsat offers a high spatial resolution, the low temporal resolution of 16 days is a significant drawback to achieve a near real-time monitoring system. This gap may be bridged by using MODIS images that have a high temporal resolution of 1 day, in spite of its low spatial resolution. Synthetic Landsat images were fused for dates with no Landsat overpass over the study area. Finally, with a suite of ground truth data, a few genetic programming (GP) models were derived to estimate the water quality using the fused surface reflectance data as inputs. The GP model for chlorophyll a estimation yielded a R(2) of 0.94, with a Root Mean Square Error (RMSE) = 8 mg m(-3), and the GP model for water transparency estimation using Secchi disk showed a R(2) of 0.89, with an RMSE = 4 cm. With this effort, the spatiotemporal variations of water transparency and chlorophyll a concentrations may be assessed simultaneously on a daily basis throughout the lake for environmental management.

摘要

湖泊富营养化是供水、环境管理和生态系统保护相互作用中的一个关键问题。迫切需要进行综合传感、监测和建模,以对湖泊水质进行多成分的整体评估。本文的目的是开发一种用于卫星遥感图像数据融合与挖掘的综合算法,以生成一些感兴趣的水质参数(如叶绿素a浓度和水体透明度)的每日估计值,用于评估富营养化的巴伦西亚阿尔布费拉湖。巴伦西亚阿尔布费拉湖是西班牙最大的淡水湖,其叶绿素a浓度常常超过200毫克/立方米,透明度(塞氏盘,SD)低至20厘米。来自中分辨率成像光谱仪(MODIS)以及陆地卫星专题制图仪(TM)和增强型专题制图仪(ETM+)图像的遥感数据被融合,以便每天进行综合的近实时水质评估。与MODIS的低空间分辨率(250/500米)相比,陆地卫星图像因其30米的空间分辨率,对于研究水质参数的空间变异性很有用处。虽然陆地卫星提供了高空间分辨率,但16天的低时间分辨率是实现近实时监测系统的一个重大缺陷。尽管MODIS空间分辨率低,但它具有1天的高时间分辨率,可弥补这一差距。针对研究区域无陆地卫星过境日期合成了陆地卫星图像。最后利用一系列地面真值数据,推导了一些遗传编程(GP)模型,以融合后的地表反射率数据为输入来估算水质。用于叶绿素a估算的GP模型的决定系数R²为0.94,均方根误差(RMSE)=8毫克/立方米,而使用塞氏盘估算水体透明度的GP模型的R²为0.89, RMSE =4厘米。通过这项工作,可以在整个湖泊每天同时评估水体透明度和叶绿素a浓度的时空变化,以用于环境管理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验