Lee Seung-Hoon, Kim Seon-Young, Ding Weixing, Kang Hojeong
School of Civil and Environmental Engineering, Yonsei University, Seoul, 120-749, Korea.
Appl Microbiol Biotechnol. 2015 Jun;99(12):5295-305. doi: 10.1007/s00253-015-6385-8. Epub 2015 Jan 22.
The individual effects of either elevated CO2 or N deposition on soil microbial communities have been widely studied, but limited information is available regarding the responses of the bacteria, fungi, and archaea communities to both elevated CO2 and N in wetland ecosystems with different types of plants. Using a terminal restriction fragment length polymorphism (T-RFLP) analysis and real-time quantitative PCR (RT-Q-PCR), we compared communities of bacteria, fungi, and archaea in a marsh microcosm with one of seven macrophytes, Typha latifolia, Phragmites japonica, Miscanthus sacchariflorus, Scirpus lacustris, Juncus effusus, Phragmites australis, or Zizania latifolia, after exposing them to eCO2 and/or amended N for 110 days. Overall, our results showed that the elevated CO2 and N may affect the bacterial and archaeal communities, while they may not affect the fungal community in terms of both diversity and abundance. The effects of elevated CO2 and N on microbial community vary depending on the plant types, and each microbial community shows different responses to the elevated CO2 and N. In particular, elevated CO2 might force a shift in the archaeal community irrespective of the plant type, and the effect of elevated CO2 was enhanced when combined with the N effect. This study indicates that elevated CO2 and N addition could lead to changes in the community structures of bacteria and archaea. Our results also suggest that the fungal group is less sensitive to external changes, while the bacterial and archaeal groups are more sensitive to them. Finally, the characteristics of the plant type and relevant physicochemical factors induced by the elevated CO2 and N may be important key factors structuring the microbial community's response to environmental change, which implies the need for a more comprehensive approach to understanding the pattern of the wetland response to climate change.
二氧化碳浓度升高或氮沉降对土壤微生物群落的个体影响已得到广泛研究,但关于不同植物类型的湿地生态系统中细菌、真菌和古菌群落对二氧化碳浓度升高和氮的响应的信息有限。我们使用末端限制性片段长度多态性(T-RFLP)分析和实时定量PCR(RT-Q-PCR),将7种大型植物之一的宽叶香蒲、日本芦苇、荻、芦苇、灯心草、芦苇或菰种植在沼泽微宇宙中,在将它们暴露于高浓度二氧化碳(eCO2)和/或添加氮110天后,比较了细菌、真菌和古菌群落。总体而言,我们的结果表明,二氧化碳浓度升高和氮可能会影响细菌和古菌群落,而在多样性和丰度方面可能不会影响真菌群落。二氧化碳浓度升高和氮对微生物群落的影响因植物类型而异,每个微生物群落对二氧化碳浓度升高和氮表现出不同的响应。特别是,无论植物类型如何,二氧化碳浓度升高可能会导致古菌群落发生转变,当与氮的影响相结合时,二氧化碳浓度升高的影响会增强。这项研究表明,二氧化碳浓度升高和添加氮可能导致细菌和古菌群落结构的变化。我们的结果还表明,真菌组对外部变化不太敏感,而细菌和古菌组对它们更敏感。最后,二氧化碳浓度升高和氮诱导的植物类型特征和相关理化因素可能是构建微生物群落对环境变化响应的重要关键因素,这意味着需要一种更全面的方法来理解湿地对气候变化的响应模式。