Department of Horticulture, Cornell University, 134A Plant Sciences Building, Ithaca, NY, 14853, USA,
Microb Ecol. 2013 Oct;66(3):621-9. doi: 10.1007/s00248-013-0254-8. Epub 2013 Jun 20.
Rising atmospheric CO(2) levels alter the physiology of many plant species, but little is known of changes to root dynamics that may impact soil microbial mediation of greenhouse gas emissions from wetlands. We grew co-occurring wetland plant species that included an invasive reed canary grass (Phalaris arundinacea L.) and a native woolgrass (Scirpus cyperinus L.) in a controlled greenhouse facility under ambient (380 ppm) and elevated atmospheric CO(2) (700 ppm). We hypothesized that elevated atmospheric CO(2) would increase the abundance of both archaeal methanogen and bacterial methanotroph populations through stimulation of plant root and shoot biomass. We found that methane levels emitted from S. cyperinus shoots increased 1.5-fold under elevated CO(2), while no changes in methane levels were detected from P. arundincea. The increase in methane emissions was not explained by enhanced root or shoot growth of S. cyperinus. Principal components analysis of the total phospholipid fatty acid (PLFA) recovered from microbial cell membranes revealed that elevated CO(2) levels shifted the composition of the microbial community under S. cyperinus, while no changes were detected under P. arundinacea. More detailed analysis of microbial abundance showed no impact of elevated CO(2) on a fatty acid indicative of methanotrophic bacteria (18:2ω6c), and no changes were detected in the terminal restriction fragment length polymorphism (T-RFLP) relative abundance profiles of acetate-utilizing archaeal methanogens. Plant carbon depleted in (13)C was traced into the PLFAs of soil microorganisms as a measure of the plant contribution to microbial PLFA. The relative contribution of plant-derived carbon to PLFA carbon was larger in S. cyperinus compared with P. arundinacea in four PLFAs (i14:0, i15:0, a15:0, and 18:1ω9t). The δ(13)C isotopic values indicate that the contribution of plant-derived carbon to microbial lipids could differ in rhizospheres of CO(2)-responsive plant species, such as S. cyperinus in this study. The results from this study show that the CO(2)-methane link found in S. cyperinus can occur without a corresponding change in methanogen and methanotroph relative abundances, but PLFA analysis indicated shifts in the community profile of bacteria and fungi that were unique to rhizospheres under elevated CO(2).
大气中二氧化碳(CO2)水平的升高会改变许多植物物种的生理机能,但对于可能影响湿地温室气体排放的根动态变化却知之甚少。我们在控制温室环境中,用常规定量(380ppm)和升高的大气 CO2(700ppm)同时培养两种湿地共生植物物种,包括入侵的柳枝稷(Phalaris arundinacea L.)和本地的香蒲(Scirpus cyperinus L.)。我们假设,通过刺激植物的根和茎生物量,升高的大气 CO2 会增加古菌产甲烷菌和细菌甲烷氧化菌的丰度。我们发现,在 CO2 升高的条件下,香蒲的茎部甲烷排放量增加了 1.5 倍,而柳枝稷的甲烷排放量没有变化。香蒲的根和茎生长增强并不能解释甲烷排放的增加。从微生物细胞膜中回收的总磷脂脂肪酸(PLFA)的主成分分析表明,升高的 CO2 水平改变了香蒲下微生物群落的组成,而在柳枝稷下则没有发现变化。对微生物丰度的更详细分析表明,升高的 CO2 对指示甲烷氧化菌的脂肪酸(18:2ω6c)没有影响,并且在利用乙酸的古菌产甲烷菌的末端限制性片段长度多态性(T-RFLP)相对丰度谱中也没有检测到变化。作为植物对微生物 PLFA 贡献的衡量标准,用植物中(13)C 标记的碳追踪到土壤微生物中的 PLFA。与柳枝稷相比,香蒲中四个 PLFA(i14:0、i15:0、a15:0 和 18:1ω9t)中植物来源碳对 PLFA 碳的相对贡献更大。δ(13)C 同位素值表明,在 CO2 响应植物物种的根际中,植物来源碳对微生物脂类的贡献可能不同,如本研究中的香蒲。本研究结果表明,在香蒲中发现的 CO2-甲烷联系可能不会导致产甲烷菌和甲烷氧化菌相对丰度的相应变化,但 PLFA 分析表明,升高的 CO2 下细菌和真菌群落的组成发生了变化,这是根际特有的。