Suppr超能文献

澳大利亚本土草原土壤中细菌、古菌和真菌微生物群落结构对 CO₂升高和增温的响应变化。

Changes in the microbial community structure of bacteria, archaea and fungi in response to elevated CO(2) and warming in an Australian native grassland soil.

机构信息

Department of Primary Industries, Biosciences Research Division, Victorian AgriBiosciences Centre, 1 Park Drive, Bundoora, Victoria, 3083, Australia.

出版信息

Environ Microbiol. 2012 Dec;14(12):3081-96. doi: 10.1111/j.1462-2920.2012.02855.x. Epub 2012 Oct 8.

Abstract

The microbial community structure of bacteria, archaea and fungi is described in an Australian native grassland soil after more than 5 years exposure to different atmospheric CO2 concentrations ([CO2]) (ambient, +550 ppm) and temperatures (ambient, + 2°C) under different plant functional types (C3 and C4 grasses) and at two soil depths (0-5 cm and 5-10 cm). Archaeal community diversity was influenced by elevated [CO2], while under warming archaeal 16S rRNA gene copy numbers increased for C4 plant Themeda triandra and decreased for the C3 plant community (P < 0.05). Fungal community diversity resulted in three groups based upon elevated [CO2], elevated [CO2] plus warming and ambient [CO2]. Overall bacterial community diversity was influenced primarily by depth. Specific bacterial taxa changed in richness and relative abundance in response to climate change factors when assessed by a high-resolution 16S rRNA microarray (PhyloChip). Operational taxonomic unit signal intensities increased under elevated [CO2] for both Firmicutes and Bacteroidetes, and increased under warming for Actinobacteria and Alphaproteobacteria. For the interaction of elevated [CO2] and warming there were 103 significant operational taxonomic units (P < 0.01) representing 15 phyla and 30 classes. The majority of these operational taxonomic units increased in abundance for elevated [CO2] plus warming plots, while abundance declined in warmed or elevated [CO2] plots. Bacterial abundance (16S rRNA gene copy number) was significantly different for the interaction of elevated [CO2] and depth (P < 0.05) with decreased abundance under elevated [CO2] at 5-10 cm, and for Firmicutes under elevated [CO2] (P < 0.05). Bacteria, archaea and fungi in soil responded differently to elevated [CO2], warming and their interaction. Taxa identified as significantly climate-responsive could show differing trends in the direction of response ('+' or '-') under elevated CO2 or warming, which could then not be used to predict their interactive effects supporting the need to investigate interactive effects for climate change. The approach of focusing on specific taxonomic groups provides greater potential for understanding complex microbial community changes in ecosystems under climate change.

摘要

在不同植物功能类型(C3 和 C4 草)和两个土壤深度(0-5 厘米和 5-10 厘米)下,经过 5 年以上暴露于不同大气 CO2 浓度([CO2])(环境,+550 ppm)和温度(环境,+2°C)后,描述了澳大利亚原生草原土壤中细菌、古菌和真菌的微生物群落结构。古菌群落多样性受到[CO2]升高的影响,而在升温下,C4 植物梯牧草的古菌 16S rRNA 基因拷贝数增加,而 C3 植物群落则减少(P<0.05)。真菌群落多样性根据[CO2]升高、[CO2]升高加升温以及环境[CO2]分为三组。总体而言,细菌群落多样性主要受深度影响。通过高分辨率 16S rRNA 微阵列(PhyloChip)评估时,特定的细菌分类群在丰富度和相对丰度上因气候变化因素而发生变化。在[CO2]升高的情况下,厚壁菌门和拟杆菌门的操作分类单元信号强度增加,而在升温的情况下,放线菌门和α变形菌门的信号强度增加。对于[CO2]升高和升温的相互作用,有 103 个显著的操作分类单元(P<0.01),代表 15 个门和 30 个纲。这些操作分类单元中的大多数在[CO2]升高加升温的地块中增加了丰度,而在升温或[CO2]升高的地块中减少了丰度。细菌丰度(16S rRNA 基因拷贝数)在[CO2]升高和深度的相互作用方面有显著差异(P<0.05),在 5-10 厘米处[CO2]升高时丰度下降,在[CO2]升高时厚壁菌门的丰度下降(P<0.05)。土壤中的细菌、古菌和真菌对[CO2]升高、升温及其相互作用的反应不同。被确定为对气候有显著响应的分类群在[CO2]升高或升温下的响应方向(“+”或“-”)可能表现出不同的趋势,因此不能用于预测它们的相互作用效应,这支持了需要研究气候变化的相互作用效应的观点。关注特定分类群的方法为了解气候变化下生态系统中复杂的微生物群落变化提供了更大的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验