Suppr超能文献

小眼畸形相关转录因子(MITF)驱动内溶酶体生物合成并增强黑色素瘤细胞中的Wnt信号传导。

MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells.

作者信息

Ploper Diego, Taelman Vincent F, Robert Lidia, Perez Brian S, Titz Björn, Chen Hsiao-Wang, Graeber Thomas G, von Euw Erika, Ribas Antoni, De Robertis Edward M

机构信息

Howard Hughes Medical Institute and Department of Biological Chemistry.

Department of Medicine, Division of Hematology-Oncology.

出版信息

Proc Natl Acad Sci U S A. 2015 Feb 3;112(5):E420-9. doi: 10.1073/pnas.1424576112. Epub 2015 Jan 20.

Abstract

Canonical Wnt signaling plays an important role in development and disease, regulating transcription of target genes and stabilizing many proteins phosphorylated by glycogen synthase kinase 3 (GSK3). We observed that the MiT family of transcription factors, which includes the melanoma oncogene MITF (micropthalmia-associated transcription factor) and the lysosomal master regulator TFEB, had the highest phylogenetic conservation of three consecutive putative GSK3 phosphorylation sites in animal proteomes. This finding prompted us to examine the relationship between MITF, endolysosomal biogenesis, and Wnt signaling. Here we report that MITF expression levels correlated with the expression of a large subset of lysosomal genes in melanoma cell lines. MITF expression in the tetracycline-inducible C32 melanoma model caused a marked increase in vesicular structures, and increased expression of late endosomal proteins, such as Rab7, LAMP1, and CD63. These late endosomes were not functional lysosomes as they were less active in proteolysis, yet were able to concentrate Axin1, phospho-LRP6, phospho-β-catenin, and GSK3 in the presence of Wnt ligands. This relocalization significantly enhanced Wnt signaling by increasing the number of multivesicular bodies into which the Wnt signalosome/destruction complex becomes localized upon Wnt signaling. We also show that the MITF protein was stabilized by Wnt signaling, through the novel C-terminal GSK3 phosphorylations identified here. MITF stabilization caused an increase in multivesicular body biosynthesis, which in turn increased Wnt signaling, generating a positive-feedback loop that may function during the proliferative stages of melanoma. The results underscore the importance of misregulated endolysosomal biogenesis in Wnt signaling and cancer.

摘要

经典Wnt信号通路在发育和疾病中发挥重要作用,可调节靶基因转录并稳定许多被糖原合酶激酶3(GSK3)磷酸化的蛋白质。我们观察到,MiT转录因子家族,包括黑色素瘤癌基因MITF(小眼相关转录因子)和溶酶体主要调节因子TFEB,在动物蛋白质组中具有三个连续假定GSK3磷酸化位点的最高系统发育保守性。这一发现促使我们研究MITF、内溶酶体生物发生和Wnt信号通路之间的关系。在此我们报告,MITF表达水平与黑色素瘤细胞系中一大类溶酶体基因的表达相关。在四环素诱导的C32黑色素瘤模型中,MITF表达导致囊泡结构显著增加,并增加了晚期内体蛋白(如Rab7、LAMP1和CD63)的表达。这些晚期内体不是功能性溶酶体,因为它们在蛋白水解中活性较低,但在存在Wnt配体的情况下能够聚集Axin1、磷酸化LRP6、磷酸化β-连环蛋白和GSK3。这种重新定位通过增加多泡体的数量显著增强了Wnt信号通路,Wnt信号小体/破坏复合物在Wnt信号传导时会定位于多泡体中。我们还表明,通过此处鉴定的新型C末端GSK3磷酸化,Wnt信号通路可使MITF蛋白稳定。MITF的稳定导致多泡体生物合成增加,进而增加Wnt信号通路,产生一个可能在黑色素瘤增殖阶段起作用的正反馈环。结果强调了内溶酶体生物发生失调在Wnt信号通路和癌症中的重要性。

相似文献

1
MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells.
Proc Natl Acad Sci U S A. 2015 Feb 3;112(5):E420-9. doi: 10.1073/pnas.1424576112. Epub 2015 Jan 20.
2
The MITF family of transcription factors: Role in endolysosomal biogenesis, Wnt signaling, and oncogenesis.
Pharmacol Res. 2015 Sep;99:36-43. doi: 10.1016/j.phrs.2015.04.006. Epub 2015 May 21.
3
Arginine methylation is required for canonical Wnt signaling and endolysosomal trafficking.
Proc Natl Acad Sci U S A. 2018 Jun 5;115(23):E5317-E5325. doi: 10.1073/pnas.1804091115. Epub 2018 May 17.
4
MITF regulation - more hints from Wnt.
Pigment Cell Melanoma Res. 2015 Jul;28(4):372-3. doi: 10.1111/pcmr.12366. Epub 2015 Apr 13.
6
MITF and TFEB cross-regulation in melanoma cells.
PLoS One. 2020 Sep 3;15(9):e0238546. doi: 10.1371/journal.pone.0238546. eCollection 2020.
7
The microphthalmia-associated transcription factor Mitf interacts with beta-catenin to determine target gene expression.
Mol Cell Biol. 2006 Dec;26(23):8914-27. doi: 10.1128/MCB.02299-05. Epub 2006 Sep 25.
8
BRAF/MAPK and GSK3 signaling converges to control MITF nuclear export.
Proc Natl Acad Sci U S A. 2018 Sep 11;115(37):E8668-E8677. doi: 10.1073/pnas.1810498115. Epub 2018 Aug 27.
9
Cell Biology of Canonical Wnt Signaling.
Annu Rev Cell Dev Biol. 2021 Oct 6;37:369-389. doi: 10.1146/annurev-cellbio-120319-023657. Epub 2021 Jul 1.

引用本文的文献

1
Lysosomal Enhancement Prevents Infection with PrP, α-Synuclein & Tau Prions.
bioRxiv. 2025 Jun 25:2025.06.24.661349. doi: 10.1101/2025.06.24.661349.
2
Double-sided niche regulation in skin stem cell and cancer: mechanisms and clinical applications.
Mol Cancer. 2025 May 21;24(1):147. doi: 10.1186/s12943-025-02289-8.
5
Novel mechanisms of MITF regulation identified in a mouse suppressor screen.
EMBO Rep. 2024 Oct;25(10):4252-4280. doi: 10.1038/s44319-024-00225-3. Epub 2024 Aug 21.
6
Feedforward cysteine regulation maintains melanoma differentiation state and limits metastatic spread.
Cell Rep. 2024 Jul 23;43(7):114484. doi: 10.1016/j.celrep.2024.114484. Epub 2024 Jul 10.
7
Small Peptide Derived from SFRP5 Suppresses Melanogenesis by Inhibiting Wnt Activity.
Curr Issues Mol Biol. 2024 May 29;46(6):5420-5435. doi: 10.3390/cimb46060324.
8
Osteogenesis imperfecta type 10 and the cellular scaffolds underlying common immunological diseases.
Genes Immun. 2024 Aug;25(4):265-276. doi: 10.1038/s41435-024-00277-4. Epub 2024 May 29.
9
Mitf, with Yki and STRIPAK-PP2A, is a key determinant of form and fate in the progenitor epithelium of the Drosophila eye.
Eur J Cell Biol. 2024 Jun;103(2):151421. doi: 10.1016/j.ejcb.2024.151421. Epub 2024 May 15.
10
Impairing hydrolase transport machinery prevents human melanoma metastasis.
Commun Biol. 2024 May 15;7(1):574. doi: 10.1038/s42003-024-06261-y.

本文引用的文献

1
Genes involved in the WNT and vesicular trafficking pathways are associated with melanoma predisposition.
Int J Cancer. 2015 May 1;136(9):2109-19. doi: 10.1002/ijc.29257. Epub 2014 Oct 24.
2
The roles of microphthalmia-associated transcription factor and pigmentation in melanoma.
Arch Biochem Biophys. 2014 Dec 1;563:28-34. doi: 10.1016/j.abb.2014.07.019. Epub 2014 Aug 9.
3
RAB7 controls melanoma progression by exploiting a lineage-specific wiring of the endolysosomal pathway.
Cancer Cell. 2014 Jul 14;26(1):61-76. doi: 10.1016/j.ccr.2014.04.030. Epub 2014 Jun 26.
4
Mitotic wnt signaling promotes protein stabilization and regulates cell size.
Mol Cell. 2014 May 22;54(4):663-74. doi: 10.1016/j.molcel.2014.04.014. Epub 2014 May 15.
5
Novel roles for the MiTF/TFE family of transcription factors in organelle biogenesis, nutrient sensing, and energy homeostasis.
Cell Mol Life Sci. 2014 Jul;71(13):2483-97. doi: 10.1007/s00018-014-1565-8. Epub 2014 Jan 30.
7
Multivesicular GSK3 sequestration upon Wnt signaling is controlled by p120-catenin/cadherin interaction with LRP5/6.
Mol Cell. 2014 Feb 6;53(3):444-57. doi: 10.1016/j.molcel.2013.12.010. Epub 2014 Jan 9.
8
Directed phenotype switching as an effective antimelanoma strategy.
Cancer Cell. 2013 Jul 8;24(1):105-19. doi: 10.1016/j.ccr.2013.05.009. Epub 2013 Jun 20.
9
TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop.
Nat Cell Biol. 2013 Jun;15(6):647-58. doi: 10.1038/ncb2718. Epub 2013 Apr 21.
10
A RANKL-PKCβ-TFEB signaling cascade is necessary for lysosomal biogenesis in osteoclasts.
Genes Dev. 2013 Apr 15;27(8):955-69. doi: 10.1101/gad.213827.113. Epub 2013 Apr 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验