Suppr超能文献

芯片上的血小板生物反应器

Platelet bioreactor-on-a-chip.

作者信息

Thon Jonathan N, Mazutis Linas, Wu Stephen, Sylman Joanna L, Ehrlicher Allen, Machlus Kellie R, Feng Qiang, Lu Shijiang, Lanza Robert, Neeves Keith B, Weitz David A, Italiano Joseph E

出版信息

Blood. 2014 Sep 18;124(12):1857-67. doi: 10.1182/blood-2014-05-574913.

Abstract

Platelet transfusions total >2.17 million apheresis-equivalent units per year in the United States and are derived entirely from human donors, despite clinically significant immunogenicity, associated risk of sepsis, and inventory shortages due to high demand and 5-day shelf life. To take advantage of known physiological drivers of thrombopoiesis, we have developed a microfluidic human platelet bioreactor that recapitulates bone marrow stiffness, extracellular matrix composition,micro-channel size, hemodynamic vascular shear stress, and endothelial cell contacts, and it supports high-resolution live-cell microscopy and quantification of platelet production. Physiological shear stresses triggered proplatelet initiation, reproduced ex vivo bone marrow proplatelet production, and generated functional platelets. Modeling human bone marrow composition and hemodynamics in vitro obviates risks associated with platelet procurement and storage to help meet growing transfusion needs.

摘要

在美国,每年血小板输注总量超过217万个单采等效单位,且完全来自人类供体,尽管存在临床上显著的免疫原性、败血症相关风险以及由于高需求和5天保质期导致的库存短缺。为了利用已知的血小板生成生理驱动因素,我们开发了一种微流控人血小板生物反应器,该反应器概括了骨髓硬度、细胞外基质组成、微通道大小、血液动力学血管剪切应力和内皮细胞接触,并且支持高分辨率活细胞显微镜检查和血小板生成定量。生理剪切应力触发前血小板起始,在体外重现骨髓前血小板生成,并产生功能性血小板。在体外模拟人类骨髓组成和血液动力学可消除与血小板采集和储存相关的风险,以帮助满足不断增长的输血需求。

相似文献

1
Platelet bioreactor-on-a-chip.
Blood. 2014 Sep 18;124(12):1857-67. doi: 10.1182/blood-2014-05-574913.
2
Platelet bioreactor: accelerated evolution of design and manufacture.
Platelets. 2017 Jul;28(5):472-477. doi: 10.1080/09537104.2016.1265922. Epub 2017 Jan 23.
3
In vitro generation of platelets: Where do we stand?
Transfus Clin Biol. 2017 Sep;24(3):273-276. doi: 10.1016/j.tracli.2017.06.013. Epub 2017 Jun 29.
5
A uniform-shear rate microfluidic bioreactor for real-time study of proplatelet formation and rapidly-released platelets.
Biotechnol Prog. 2017 Nov;33(6):1614-1629. doi: 10.1002/btpr.2563. Epub 2017 Oct 13.
7
Translational approaches to functional platelet production ex vivo.
Thromb Haemost. 2016 Jan;115(2):250-6. doi: 10.1160/TH15-07-0570. Epub 2015 Sep 10.
8
Dynamic visualization of thrombopoiesis within bone marrow.
Science. 2007 Sep 21;317(5845):1767-70. doi: 10.1126/science.1146304.
10
Road blocks in making platelets for transfusion.
J Thromb Haemost. 2015 Jun;13 Suppl 1(Suppl 1):S55-62. doi: 10.1111/jth.12942.

引用本文的文献

1
Association of microtubule destabilization with platelet yields in terminally differentiating hiPSC-derived megakaryocyte lines.
PLoS One. 2025 Jun 25;20(6):e0326165. doi: 10.1371/journal.pone.0326165. eCollection 2025.
4
Fabrication of a novel 3D-printed perfusion bioreactor for complex cell culture models.
Sci Rep. 2025 Mar 24;15(1):10134. doi: 10.1038/s41598-025-94093-z.
5
Cell cycle-dependent centrosome clustering precedes proplatelet formation.
Sci Adv. 2024 Jun 21;10(25):eadl6153. doi: 10.1126/sciadv.adl6153. Epub 2024 Jun 19.
6
A circle of life: platelet and megakaryocyte cytoskeleton dynamics in health and disease.
Open Biol. 2024 Jun;14(6):240041. doi: 10.1098/rsob.240041. Epub 2024 Jun 5.
7
Platelet size matters.
Blood. 2024 Jan 25;143(4):298-300. doi: 10.1182/blood.2023023057.
8
Mass production of iPSC-derived platelets toward the clinical application.
Regen Ther. 2024 Jan 4;25:213-219. doi: 10.1016/j.reth.2023.12.009. eCollection 2024 Mar.
10
Bone marrow vasculature advanced models for cancer and cardiovascular research.
Front Cardiovasc Med. 2023 Oct 17;10:1261849. doi: 10.3389/fcvm.2023.1261849. eCollection 2023.

本文引用的文献

1
Expandable megakaryocyte cell lines enable clinically applicable generation of platelets from human induced pluripotent stem cells.
Cell Stem Cell. 2014 Apr 3;14(4):535-48. doi: 10.1016/j.stem.2014.01.011. Epub 2014 Feb 13.
2
The use of microfluidics in hemostasis: clinical diagnostics and biomimetic models of vascular injury.
Curr Opin Hematol. 2013 Sep;20(5):417-23. doi: 10.1097/MOH.0b013e3283642186.
3
Two differential flows in a bioreactor promoted platelet generation from human pluripotent stem cell-derived megakaryocytes.
Exp Hematol. 2013 Aug;41(8):742-8. doi: 10.1016/j.exphem.2013.04.007. Epub 2013 Apr 22.
4
Single-cell analysis and sorting using droplet-based microfluidics.
Nat Protoc. 2013 May;8(5):870-91. doi: 10.1038/nprot.2013.046. Epub 2013 Apr 4.
5
Challenges and promises for the development of donor-independent platelet transfusions.
Blood. 2013 Apr 25;121(17):3319-24. doi: 10.1182/blood-2012-09-455428. Epub 2013 Jan 15.
6
A novel role of sphingosine 1-phosphate receptor S1pr1 in mouse thrombopoiesis.
J Exp Med. 2012 Nov 19;209(12):2165-81. doi: 10.1084/jem.20121090. Epub 2012 Nov 12.
7
In vitro generation of platelets through direct conversion: first report in My Knowledge (iMK).
Cell Res. 2013 Feb;23(2):176-8. doi: 10.1038/cr.2012.142. Epub 2012 Oct 9.
8
Platelets: production, morphology and ultrastructure.
Handb Exp Pharmacol. 2012(210):3-22. doi: 10.1007/978-3-642-29423-5_1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验