Li Song, Hafz Nasr A M, Mirzaie Mohammad, Sokollik Thomas, Zeng Ming, Chen Min, Sheng Zhengming, Zhang Jie
Opt Express. 2014 Dec 1;22(24):29578-86. doi: 10.1364/OE.22.029578.
We report on overall enhancement of a single-stage laser wakefield acceleration (LWFA) using the ionization injection in a mixture of 0.3% nitrogen gas in 99.7% helium gas. Upon the interaction of 30-TW, 30-fs laser pulses with a gas jet of the above gas mixture, >300 MeV electron beams were generated at a helium plasma densities of 3.3-8.5 × 10(18) cm(-3). Compared with the uncontrolled electron self-injection in pure helium gas jet, the ionization injection process due to the presence of ultra-low nitrogen concentrations appears to be self-controlled; it has led to the generation of electron beams with higher energies, higher charge, lower density threshold for trapping, and a narrower energy spread without dark current (low energy electrons) or multiple bunches. It is foreseen that further optimization of such a scheme is expected to bring the electron beam energy-spread down to 1%, making them suitable for driving ultra-compact free-electron lasers.
我们报告了在99.7%的氦气与0.3%的氮气混合气体中利用电离注入实现单级激光尾场加速(LWFA)的整体增强。当30太瓦、30飞秒的激光脉冲与上述混合气体的气体喷流相互作用时,在氦等离子体密度为3.3 - 8.5×10¹⁸厘米⁻³的情况下产生了能量大于300兆电子伏特的电子束。与在纯氦气喷流中不受控制的电子自注入相比,由于超低氮浓度的存在,电离注入过程似乎是自我控制的;它导致产生了能量更高、电荷量更高、俘获的密度阈值更低且能量分布更窄的电子束,且没有暗电流(低能电子)或多束团。可以预见,进一步优化这样的方案有望将电子束的能量分布降低到1%,使其适用于驱动超紧凑型自由电子激光器。